The TapCorder Data Set

dc.contributor.authorSeiffert, Udo
dc.contributor.authorJadhav, Ashish Shivajirao
dc.date.accessioned2024-11-19T13:18:34Z
dc.date.available2024-11-19T13:18:34Z
dc.date.issued2024
dc.descriptiontapcorderv1/ ├── data/ │ ├── used/ │ │ ├── used00001.png │ │ └── used00002.png │ ├── new/ │ │ ├── new00001.png │ │ └── new00002.png │ └── clean/ │ ├── clean00001.png │ └── clean00002.png └── README.md
dc.description.abstractThis study presents a novel approach for classifying oily or cream-like substances using diffraction data captured on a smartphone camera, applied specifically to assessing engine oil quality. Utilising the COMPOLYTICS(R) TapCorder approach, optical diffraction patterns were analysed with a tailored feature extraction method. The performance of three machine learning paradigms - Multilayer Perceptrons (MLP), Learning Vector Quantization (LVQ), and Radial Basis Function Networks (RBFN) - was analysed in classifying new and used oil samples. MLP achieved the highest accuracy, while LVQ required the least computation time, highlighting trade-offs relevant for consumer-focused applications. This work clearly demonstrates the feasibility of accessible, low-cost chemical substance analysis via smartphone-based systems.
dc.identifier.urihttps://open-science.ub.ovgu.de/handle/684882692/121
dc.identifier.urihttps://doi.org/10.24352/ub.ovgu-2024-096
dc.language.isoen
dc.publisherOtto-von-Guericke Universität Magdeburg
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectDiffraction
dc.subjectImaging data
dc.titleThe TapCorder Data Set
dc.typeDataset

Files

Original bundle
Now showing 1 - 4 of 4
No Thumbnail Available
Name:
used.zip
Size:
423.9 MB
Format:
Unknown data format
No Thumbnail Available
Name:
new.zip
Size:
392.01 MB
Format:
Unknown data format
No Thumbnail Available
Name:
clean.zip
Size:
397.46 MB
Format:
Unknown data format
No Thumbnail Available
Name:
README.md
Size:
2.48 KB
Format:
Unknown data format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: