
Wissenschaftliches Arbeiten

Abschlussarbeiten in den MINT-Fächern

Dr.-Ing. Claudia Krull

Was ist Wissenschaft?

Wissenschaft heißt: Fragen

Das Ziel der Wissenschaft ist der Erkenntnisgewinn.

Wissenschaft = Wissen schaffen

Wissenschaftliche Projekte sind also meistens ...

ein Versuch, eine Frage zu beantworten.

Beispiele:

- Eignet sich die Therapie X für die Krankheit Y?
- Wie gut lassen sich mit der Methode X Vulkanausbrüche vorhersagen?
- Um wie viel kann man mit der Änderung X den Algorithmus Y beschleunigen?

Wie gehe ich vor ...

Eine typische Forschungsstudie

Eine (natur-)wissenschaftliche Studie hat vier Phasen

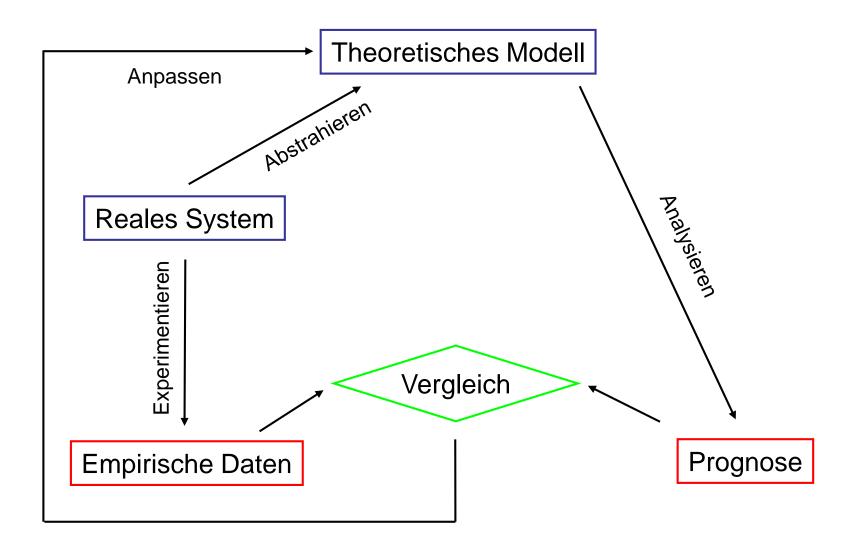
Hypothese:

Eine Vermutung, wie etwas zu verstehen ist

Prognose:

 Wie sich eine Sache gemäß der Hypothese verhalten müsste

Experimente:


Gezielte Beobachtungen der Wirklichkeit

Interpretation:

Unterstützen die Beobachtungen die Hypothese?

Theorie und Experiment

Beispiel: Relativität

Der allgemeine Aufbau der Veröffentlichung:

- 1. Die Theorie X besagt, dass [...]
- 2. Daraus folgt die Prognose, dass [...]
- 3. Wir haben folgendes Experiment durchgeführt: [...]
- 4. Das Ergebnis des Experimentes war, [...]
- 5. Wir schließen daraus, dass Theorie X [...]

Ingenieurwissenschaft

Was ist Ingenieurwissenschaft?

Die Definition des American Engineers' Council for Professional Development:

- Die kreative Anwendung wissenschaftlicher Prinzipien, um Strukturen, Maschinen, Apparate oder Prozesse zu entwerfen, [...]
- oder deren Verhalten vorherzusagen unter bestimmten Betriebsbedingungen;
- immer im Hinblich auf ihre angestrebte Funktionalität, ökonomische Aspekte und Sicherheit.

Ingenieurwissenschaftliche Fragen

Ingenieurwiss. Fragen betreffen also meistens ...

- Funktionalität
- Effizienz

Beispiele:

- Eignet sich Methode X für Problem Y?
- Was ist die optimale Konfiguration für System X?
- Wie könnte eine Lösung für Problem X aussehen?

Ingenieurwissenschaft

Wir müssen uns also mit Fragen beschäftigen wie:

- Was heißt hier, "geeignet"?
- Was heißt in diesem Fall, "optimal"?
- Wann ist eine Lösung für dieses Problem "gut"?

Das heißt, man muss am Anfang deklarieren:

Was sind meine Erfolgskriterien?

Eine typische Ingenieursstudie

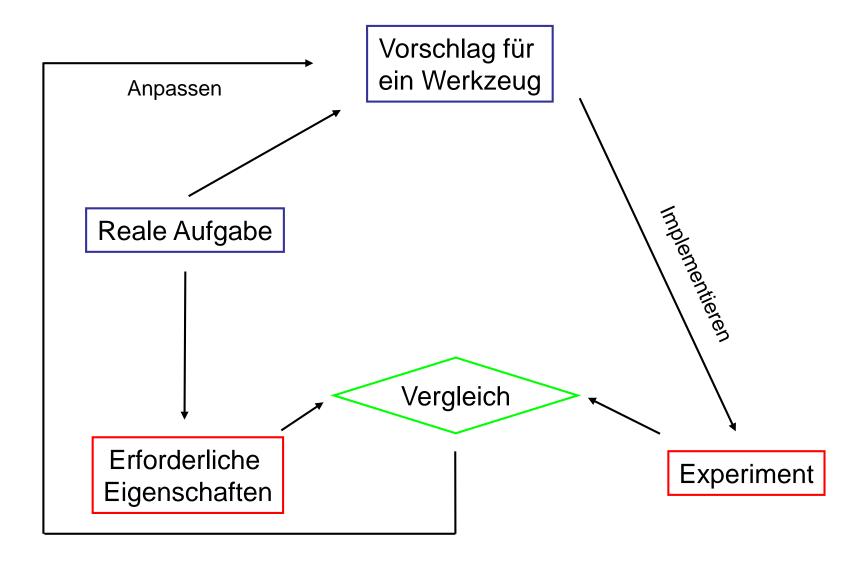
Eine klassische (ingenieur-) wissenschaftliche Studie:

Aufgabenstellung:

 Die Aufgabe, die zu lösen ist; Merkmale einer guten Lösung

Lösungsversuch:

Ein Vorschlag, wie die Aufgabe zu lösen ist


Implementierung und Experimente:

Diesen Vorschlag implementieren und testen

Schlussfolgerung:

Inwiefern eignet sich der Vorschlag zur Lösung der Aufgabe?

Beispiel: Ingenieurswerkzeug

Ein Sieben-Schritt-Aufbau

Eine typische Argumentation für eine Ingenieurarbeit:

- 1. Die folgende Aufgabe soll gelöst werden: [...]. Sie ist wichtig, weil [...]
- 2. Ein gute Lösung ist charakterisiert durch [...]
- 3. Wir schlagen als Lösung X vor. X sieht wie folgt aus: [...]
- 4. Wir haben X wie folgt implementiert: [...]
- 5. Experimente mit X zeigen, dass [...]
- 6. Wir schließen daraus, dass [...]
- 7. Die Bedeutung dieser Ergebnisse ist [...]

Was sollte ich vermeiden ...

Die Top Ten Planungsfehler

Unsere "Top Ten-Liste" von Planungsfehlern bei Arbeiten:

- 1. Nicht zu planen
- 2. Keine Vereinbarung der Ziele
- 3. Keine Meilensteine festlegen
- 4. Keinen Zeitpuffer für Fehler oder Pannen einplanen
- 5. Unterschätzung des Aufwands für Fehlersuche
- 6. Unterschätzung der Dauer der Literaturrecherche
- 7. Unzureichende Kommunikation mit dem Betreuer
- 8. Ende der Umsetzung wird zu spät angesetzt
- 9. Unterschätzen des Aufwandes bei Probanden
- 10. Erwarten, dass der Copy-Shop am Sonntag geöffnet hat ;-)

Fehler #1

Fehler #1 bei studentischen Abschlussarbeiten:

Sie beantworten keine Frage.

Eine wiss. Arbeit ist <u>nicht</u> ...

bloß ein Tätigkeitsbericht!

Fehler #2

Fehler #2 bei studentischen Abschlussarbeiten:

Sie benennen (und begründen) keine Erfolgskriterien.

Fehler #3

Fehler #3 bei studentischen Abschlussarbeiten:

 Sie verstehen das, was sie gebaut haben als Zweck, statt nur als Mittel zum Zweck.

(Dieser Fehler führt zu Fehler #2.)

Typische Mängel

Schlechte Abschlussarbeiten ähneln sich oft

Sie beantworten zu ausführlich die Fragen

- Was habe ich gemacht?
- Wie habe ich es gemacht?

Sie beantworten zu wenig die Fragen

- Warum habe ich das gemacht?
- Wozu ist das gut?

Erinnerung:

Wissenschaftliche Arbeiten sollen Fragen beantworten!

Wie kann ich das vermeiden ...

Ziele

Jedes Projekt muss ein Ziel haben.

Daran erkennt man, wann man fertig ist.

Das Ziel der Wissenschaft ist der Erkenntnisgewinn.

 Darum ist das Ziel fast immer die Beantwortung einer Frage.

Unbedingt wichtig:

Lege zuerst das Ziel Deiner Abschlussarbeit fest!

NICHT:

■ Ich fange einfach an – es wird sich schon etwas ergeben.

Ziele

Ein Beispiel aus einem Simulationsprojekt

Auftrag vom Stadtplanungsamt Magdeburg

Unklug:

 Unser Ziel ist, ein Programm zur Simulation der Kreuzung zu entwickeln

Besser:

 Unser Ziel ist, festzustellen, wie man die Sicherheit für Fahrradfahrer an dieser Kreuzung verbessern kann.

Zielvereinbarung

Wir empfehlen sie Studenten als ersten Schritt.

Inhalt

- Vorläufiger Titel
- Motivation (Worum geht es und warum?)
- Ziele (Was soll erreicht werden?)
- Randbedingungen (Was muss beachtet werden?)
- Erfolgskontrolle (Wie soll festgestellt werden, ob die Arbeit erfolgreich war?)
- Nutzen (Welchen Nutzen wird diese Arbeit haben?)
- Zeitplan (Anmeldung → Maxi-Gliederung → Vorversion → Abgabe)
- Unterschriften

Die "Maxi-Gliederung"

Was ist eine "Maxi-Gliederung"?

Mehr als nur eine Gliederung!

Enthält alle geplanten Aussagen

- Allerdings nur als Stichpunkte
- Keine Diagramme, Graphiken oder ausformulierte Sätze

Vorteile:

- Noch keine große Investition
- Zwingt zum Sammeln aller Gedanken
- Gute Gesprächsgrundlage und Check für den Betreuer

Standardisierung Seite 12

4 Standardisierung

4.1 Warum Standard?

- 4.1.1 Gefahren bei "Insellösungen"
- · Entwicklungen gehen in verschiedene Richtungen
- Verschiedene Voraussetzungen/Berechnungsgrundlagen f
 ür gleiche Kennzahlenbezeichnung
- · Arbeitstunden, die jeder investiert
- · Wartung der Anwendung kann nicht gewährleistet werden (Support)
- Was wenn Ersteller Abteilung verlässt? Know-How geht im schlechtesten Fall mit ihm

4.1.2 Potentiale des Verfahrens nach Standardisierung

- · Ein Tool für alle Werke macht diese vergleichbar
- Stehts aktuelle Kennzahlen → Nutzung f
 ür Prozessoptimierung
- De-Bottlenecking ohne Simulation: Sven's Grafik (Welche Anlagen schaffen die geforderten Stückzahlen, welche nicht)

4.2 Möglichkeiten der Realisierung

4.2.1 ZSim vs. IPS-T

- · Was ist die ZSim?
- · Was ist IPS-T?
- ↑ Meine Studienarbeit und Intranet
- Gegenüberstellung der Eigenschaften und Funktionen in Tabelle

4.2.2 Vorteile und Nachteile

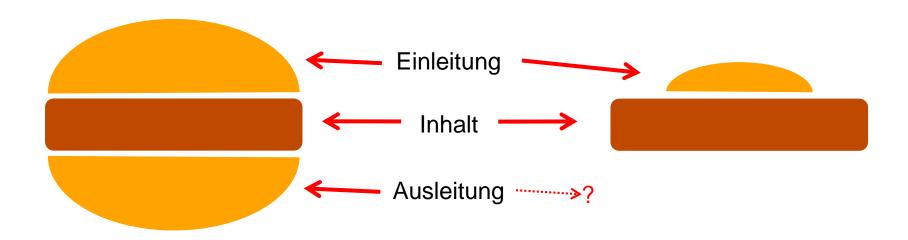
- ZSim vorgesehen f
 ür die Simulation
- Struktur für Eingangs- und Ausgangsdaten der Simulation vorhanden. Direkte Kopplung an eM-Plant schon vorhanden, Roll-Out zu diesem Zeitpunkt noch nicht hundertprozentig sicher
- . IPS-T: Ist schon als Standard gesetzt für alle Werke

Der Themen-Burger

Jeder Abschnitt braucht drei Teile

- Die Einleitung
- Die eigentliche inhaltliche Aussage
- Die "Ausleitung"

Einleitung:


Was kommt jetzt und warum?

Ausleitung:

Zusammenfassung / Bedeutung / Bewertung

Der Themen-Burger

Der Themen-Burger

Diese Dreigliedrigkeit bezieht sich auf alle Ebenen

- Die ganze Arbeit
- Jedes Kapitel
- Jeder Abschnitt

Schlecht geschriebene Arbeiten:

Eine Aneinanderreihung von Fleischbuletten

Die Konsequenzen:

- Es ist für den Leser sehr anstrengend
- Der Autor verpasst die Gelegenheit, zu glänzen

Zehn (weitere) Tipps

Zehn Tipps für die Abschlussarbeit:

- 1. Einen Betreuer wählen, der seine Sache versteht
- 2. Ein Thema wählen, das Sie wirklich interessiert
- 3. Die Erwartungen Ihres Betreuers kennen
- 4. Thema, Ziele, Aufgaben und Plan fest vereinbaren
- 5. Den Zweitgutachter so früh wie möglich einbinden
- Bedenke: Der Nutzen eines Plans liegt in der Planung!
- 7. Bedenke: Es dauert immer länger als man denkt!
- 8. Andere Menschen verursachen immer Verzögerungen
- 9. Schreiben Sie zuerst eine "Maxi-Gliederung".
- 10. Immer bedenken: Sie wollen eine Frage beantworten!

Caveat

In diesen Folien sind viele Empfehlungen enthalten

Sie sind aber aus nur einer Perspektive geschrieben

Gutachter sind ...

- oft eigenwillig
- auf jeden Fall verschieden

Darum gilt:

- Nicht ausschließlich auf diese Folien vertrauen
- Immer die Meinung deines Betreuers erfragen!

Vielen Dank für die Aufmerksamkeit!

Die "Top Ten" Probleme von Abschlussarbeiten:

- Sackgassen
- 2. Nutzlose Grundlagen
- 3. Motivationslosigkeit
- 4. Ziellosigkeit
- 5. Insularismus
- 6. Den Wald vor lauter Bäume...
- 7. Keine Argumentation
- 8. Folgenlosigkeit
- 9. Insiderjargon
- 10. Den Leser im Dunkeln lassen

1. Sackgassen

- Es stehen Ausführungen im Text, die nie mehr benötigt werden.
- Sie tragen also nicht zur Argumentationsentwicklung bei.

2. Nutzlose Grundlagen

- Seitenlange Grundlagen, die inhaltlich nicht zur Arbeit beitragen
- Oft aus Theoriebüchern oder Firmendokumenten abgeschrieben

3. Motivationslosigkeit

- Behauptungen werden ohne Begründung hingestellt.
- Der Leser versteht zwar, *was* gemacht wurde, jedoch nicht WOZU.

4. Ziellosigkeit

- Keine Benennung von Zielen
- Keine Erwartungen an die Ergebnisse
- Damit gibt es keine Möglichkeit, Erfolg oder Misserfolg zu beurteilen.

5. Insularismus

- Die Arbeit blickt weder nach links noch nach rechts.
- Kein Vergleich mit existierenden (konkurrierenden)
 Ansätzen
- Keine Abgrenzung zwischen eigenem Beitrag und bereits Vorhandenem

6. Den Wald vor lauter Bäume...

- Viele Details, aber kein "großes Bild"
- Am Schluss weiß der Leser nicht, worauf es bei der Arbeit ankommt.

7. Keine Argumentation

- Es werden keine Argumente vorgebracht für oder wider einzelne Entscheidungen oder Vorgehensweisen.
- Stattdessen werden diese einfach hingeschrieben.
- Es wird zu selten Gebrauch gemacht von Argumentationshilfen wie "deswegen", "aus diesem Grund", "deshalb", "einerseits... andererseits", oder "weil".

8. Folgenlosigkeit

- Folgen von Entscheidungen und Ergebnissen werden nicht aufgezeigt.
- Abschnitte und Kapitel haben keine Schlussfolgerungen.

9. Insiderjargon

- Abkürzungen und Fachbegriffe ohne Einführung und Erläuterung
- Besonders eine Gefahr bei externen Arbeiten ("Hausjargon")

10. Den Leser im Dunkeln lassen

- Oft fehlen Erläuterungen oder Beispiele.
- Oft fehlt einfach ein erläuterndes Diagramm oder eine Grafik.