

Wie finde ich das Thema meiner Studienarbeit? IEEE Xplore Datenbank Recherche

Eszter Lukács IEEE Client Services Manager

How to find a Topic for my Thesis? IEEE Xplore Database Research

Eszter Lukács IEEE Client Services Manager

About the IEEE

- World's largest technical membership organization with more than 419,000 members in over 160 countries
- Not for profit organization "Advancing Technology For Humanity"
- Core areas of activity
 - Membership organization
 - Conferences organizer
 - Standards developer
 - Publisher of journals, conferences, standards, eBooks, and eLearning

IEEE PES Scholar Razan Ghabin, an undergrad at Texas A&M, working on a water purification project in EL Salvador

IEEE Smart Village project empowering villages in subsaharan Africa

THE IEEE APP:

Your global gateway to IEEE

Create a personalized experience

Get geo and interest-based recommendations

Read and download your IEEE magazines

Download Today!

Stay up-to-date with the latest news

Download on the

App Store

Schedule, manage, or join meetups

Locate IEEE members by location, interests, and affiliations

GET IT ON

Google Play

Institute of Electrical and Electronics Engineers
 IEEE Student Branch
 Magdeburg

Sitemap Impressum Kontakt

Q

- -

DIREKTLINKS 🔻

Suchbegriff

>12.01.2023

ÜBER UNS I MITGLIEDER I VERANSTALTUNGEN I DOWNLOADS IEEE

Aktuelles

IEEE Workshops WS 2022-2023

Thursday	1	3:1	5 -	14:45	G03-1	12
----------	---	-----	-----	-------	-------	----

03.11.2022 | LaTeX for Beginners | Hannes Schreiber

- 17.11.2022 | How to Write a Good Protocol | Mathias Magdowski
- 01.12.2022 | First Steps in Python | Max Rosenthal
- 15.12.2022 | Proper Plots with LaTex | Benjamin Hoepfner
- 12.01.2023 | MATLAB Crash Course | Eric Glende
- 26.01.2023 | Electric Circuit Simulation with LTspice | Mathias Magdowski

Workshops WS 2022-2023
>03.11.2022
>17.11.2022
>01.12.2022
>15.12.2022

workshops > electrical

https://www.studentbranch.ovgu.de/

ent Branch onstechnik Ich richtig Ileiten und Im Grillgut

IEEE Covers All Areas of Technology

Electrical engineering, computing, and beyond...

Aerospace Artificial Intelligence Autonomous Vehicles Biomedical Engineering Broadcasting Circuits Communications Computing Control and Automation Cyber Security Electronics Information Technology Internet of Things Nanotechnology Optics Power Electronics Renewable Energy Robotics Semiconductors Smart Cities & Smart Grid Transportation **And more...**

IEEE Xplore Subscription

The IEEE *Xplore* Digital Library is your gateway to one-third of the world's technical literature:

- Unlimited full-text access
- Full-text IEEE content published since 1988, with select content dating back to 1884
- Approximately 200 IEEE Journals, Transactions, and Magazines, including early access documents
- Proceedings from IEEE Conferences
- Over 3,000 active and approved IEEE Standards
- IEEE Standards Dictionary Online

IEEE *Xplore* by the numbers:

- Over 5 million total documents
- More than 8 million downloads per month
- Over 5 million unique users

IEEE Xplore®

https://ieeexplore.ieee.org

Browse 🗸	My Settings 🗸	Help 🗸
----------	---------------	--------

Institutional Sign In

Institutional Sign In

Sign In to IEEE Xplore 😯

Search for your Institution

magdeburg

Otto-von-Guericke-Universitaet Magdeburg

✓ Remember my Institution with ¹/₁ SeamlessAccess

Ι

Learn More about SeamlessAccess

Sign In with Username and Password

OR

>

Zentraler Anmeldedienst (Single Sign-On) der OVGU Shibboleth Identity Provider

Login to IEEE XploreDigital Library

Username

Password

Don't Remember Login

□ Clear prior granting of permission for release of your information to this service.

Login

> Forgot your password?

> Need Help?

> Login failed? Informations for first semester!

OVGU IT-Service: 0391 67 58888

OVGU Medical Faculty ITMT: 0391 67 13200

OVGU Medical Faculty Moodle: 0391 67 24346

Please do NOT store this page link as a bookmark.

To Logout you must close the browser to avoid, that other users go on working under your account!

E

Zur Benutzung von eBooks, eJournals, eArticle etc.:Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.

Datenschutzerklärung der Otto-von-Guericke-Universität Magdeburg nach DSGVO

IEEE Conferences Continue to Address Growing Areas of Research in New and Emerging Technologies

IEEE conferences continue to address growing areas of research that transform our lives. Below are some examples of conferences published in 2021 covering these innovative technologies:

- 2021 IEEE International Solid-State Circuits Conference (ISSCC)
- 2021 4th International Conference on Artificial Intelligence and Big Data
- 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)

- 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- 2021 32nd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
- 2021 7th International Conference on Automation, Robotics and Applications (ICARA)
- 2021 IEEE 2nd International Conference on Big Data, AI, and Internet of Things Engineering
- 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)
- 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)
- 2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies
- 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
- 2021 5th International Conference on Internet of Things and Applications (IoT)

The top-cited publications in the field are in IEEE *Xplore*

Journal Citation Reports[®] by Impact Factor

Each year, the Journal Citation Reports[®] (JCR) from Clarivate Analytics examines the impact of scholarly journals by determining how often a journal's articles are cited by later research. are:

- 27 of the top 30 journals in EE
- 21 of the top 25 journals in Telecommunications
- All of the top 5 journals in Automation and Control Systems
- 4 of the top 5 journals in Computer Science—Information Systems
- 4 of the top 5 journals in Computer Science—Hardware & Architecture
- 3 of the top 5 journals in Computer Science—Artificial Intelligence
- 3 of the top 5 journals in Computer Science—Cybernetics
- 3 of the top 5 journals in Computer Science—Software Engineering
- 3 of the top 5 journals in Imaging Science & Photographic Technology
- 3 of the top 5 journals in Transportation Science & Technology

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

A PUBLICATION OF THE IEEE COMPUTATIONAL INTELLIGENCE SOCIETY www.leee-cis.org/pubs/tec

A PUBLICATION OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY

IEEE TRANSACTIONS ON

A PUBLICATION OF THE IEEE GEOSCIENCE AND REMOTE SENSING SOCIET

Source: 2019 Journal Citation Reports (Clarivate Analytics, 2018) Based on the 2017 study, released June 2020

Journal Citation Reports present quantifiable statistical data that provide a systematic, objective way to evaluate the world's leading journals.

11

Selecting A Research Topic

Choose An Area You Are Interested In

The research process is more relevant if you care about your topic.

Introduction to the Topic

Reading a **broad summary** enables you to get an **overview** of the topic and see how your idea relates to broader, narrower, and related issues.

Background Study

Background reading can help you choose and **limit the scope** of your topic as well as determine if there is a **research gap**.

Choose An Area You Are Interested In

IEEE Resources to help select a research area

- New Technology Connections: IEEE Future Directions <u>https://www.ieee.org/about/technologies.html</u>
- IEEE Spectrum Magazine <u>https://spectrum.ieee.org/</u>
- Trending Content on IEEE Xplore Digital Library <u>https://ieeexplore.ieee.org/</u>

IEEE Future Directions' New Initiatives

IEEE Future Directions Newsletter

Subscribe to the IEEE Future Direction IEEE Future Directions podcasts

Participants of current and graduated I_{\perp} If you wish to receive the newsletter in on this page.

IEEE Future Directions interviews top subject-matter experts in the field through its Q&A podcast series.

IEEE Future Directions considers the re work as it incubates and promotes tech social, and governmental, but not politi articles in the IEEE Future Directions Ne

2022

• January (PDF, 792 KB)

IEEE

IEEE Future Directions' Small Projects

Fields of Interest: Smart Lighting systems Technology; Visual Light Communication and Protocols; Connected and Communicating Lighting Systems; Lighting systems for smart cities, smart buildings, smart transport; Smart Lighting Standards; Human-centric Lighting; Illumination impacts (human being, ecosystem, energy, environment, natural resources); Lighting systems for developing countries; Lighting Industry Development and consumer satisfaction; Train for Lighting and Illumination.

Technical Activities: Coordinate/Engage with small satellites (CubeSats) global development, Develop Ground Stations to operate the satellites, Network the Ground Stations

Fields of Interest: Accelerate the missing technology components and encourage integrated telepresence systems. Create new interfaces for teleoperations. Operate/manipulate equipment as if present in cabin/control room. Move heavy equipment, drive agricultural machines, perform tele-medicine.

https://cmte.ieee.org/futuredirections/ieee-future-directions-new-technology-proposal-list/

IEEE Spectrum Magazine Website

A good source of inspiration

IEEE Spectrum Magazine: Annual Top Tech Issue

Look Out for Apple's AR Glasses

With head-up displays, cameras, inertial sensors, and lidar on board, Apple's augmentedreality glasses could redefine wearables

Deep Learning at the Speed of Light

Lightmatter bets that optical computing can solve Al's efficiency problem This Is How to Vaccinate the World

We can manufacture and distribute enough doses to protect humanity from COVID-19

Where No One Has Seen Before

The James Webb Space Telescope will let us see back almost to the big bang

21

IEEE Xplore: Trending Search Terms & Content

Trending Search Terms

Top Searches and Matching Documents @

X

Trending Search Terms

Top Searches and Popular Content

Top Search Terms 😯	Graphic	List	
1. machine learning		11. Big Data	21. ISSCC
2. IoT		12. VLSI	22. Reinforcement Learn
3. Artificial Intelligence		13. UAV	23. NOMA
4. Image Processing		14. Smart Grid	24. 6G
5. Cloud Computing		15. Face Recognition	25. Computer Vision
6. 5G		16. AI	
7. Deep Learning		17. Edge Computing	
8. Blockchain		18. Cyber Security	
9. Antenna		19. Object Detection	
10. Data Mining		20. FPGA	

Additional Tips for Selecting a Research Area

- Review the <u>topic selection guidelines</u> outlined in your assignment
- Ask your professor or teaching assistant for suggestions
- Hold a <u>brainstorming</u> session with your classmates

DEEP LEARNING

https://www.ieee.org/conferences/

IEEE Conference Search Results

ICICM

2022 IEEE International Conference on Image Processing, Computer Vision and Machine Learning (ICICML2022)

			4							
Home	Committees	Speakers+	Call For Papers	Program	Submission+	Registration	Venue	Download	中文	

Image processing:	Computer vision:	Machine learning:
Pattern recognition and analysis	Big data and computer vision	Intelligent data analysis
Face recognition	Biometrics, biomedical image analysis	Modeling and identification
Image feature extraction	Remote sensing image	Multitasking and migration study
Image processing	Computational photography	Machine learning algorithms
Image segmentation	Optimization and method of study	Deep learning
Object recognition	Sensor and display	Artificial intelligence

Introduction to the Topic

Search IEEE Xplore for "deep learning"

The Difference Between a Magazine and a Journal

IEEE magazines articles fall into three main categories:

•Features: Technical research articles, tutorials, and non-technical general-interest articles

•**Reviews:** Reviews of technical books and new products

•Columns and departments: Editorials, society and industry news, technology perspectives, conference updates, profiles, interviews, and event calendars

Magazines are different than journals in significant ways:

•Feature articles are shorter, with a broader appeal and fewer equations and references.

•Articles are more **tutorial** in nature. Articles are written **to appeal to nonexperts as well as experts in the field**.

•Magazines look different, with visually appealing covers and photographs throughout the issue.

Search within results		Download PDFs ▼ Per Page:	25 ▼ Export ▼ Set Sea
Showing 1-25 of 52,064 for	"deep learning"×		
Conferences (37,230)	□ Journals (11,894)	□ Early Access Articles (2,233)	Magazines (539)
Books (166)	□ Courses (2)		
			Show
Show	Select All on Page	Sort By:	Relevance ▼
 All Results Subscribed Content ? Open Access Only 	Runway Detection and Localization in Javeria Akbar; Muhammad Shahzad; M 2019 Digital Image Computing: Technic Year: 2019 Conference Paper Pub Cited by: Papers (1)	n Aerial Images using <mark>Deep Learning</mark> luhammad Imran Malik; Adnan UI-Hasan; Fasial S jues and Applications (DICTA) isher: IEEE	B Shafait
Year 🗸	Abstract HTML 📙 ©		
Author 🗸	Evaluation of Deep Learning Technic	ques in Sentiment Analysis from Twitter Data	-f
Affiliation V	Dionysis Goularas; Sani Kamis 2019 International Conference on Deer	• Learning and Machine Learning in Emerging App	lications
Publication Title	(Deep-ML) Year: 2019 Conference Paper Pub Cited by: Papers (13)	isher: IEEE	

Scroll through the Search Results

Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing

He Li; Kaoru Ota; Mianxiong Dong

IEEE Network

Year: 2018 | Volume: 32, Issue: 1 | Magazine Article | Publisher: IEEE Cited by: Papers (324)

Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

Xiao Xiang Zhu; Devis Tuia; Lichao Mou; Gui-Song Xia; Liangpei Zhang; Feng Xu; Friedrich Fraundorfer

IEEE Geoscience and Remote Sensing Magazine

Year: 2017 | Volume: 5, Issue: 4 | Magazine Article | Publisher: IEEE Cited by: Papers (283)

Deep Learning for Physical-Layer 5G Wireless Dechniques: Opportunities, Challenges and Solutions

Hongji Huang; Song Guo; Guan Gui; Zhen Yang; Jianhua Zhang; Hikmet Sari; Fumiyuki Adachi IEEE Wireless Communications

Year: 2020 | Volume: 27, Issue: 1 | Magazine Article | Publisher: IEEE Cited by: Papers (75)

The Future of Deep Learning & Photonic: Reducing the energy needs of neural networks might require computing with light

Ryan Hamerly

36

IEEE Spectrum

Year: 2021 | Volume: 58, Issue: 7 | Magazine Article | Publisher: IEEE

Topics: Internet of Things Edge Computing Remote Sensing 5G Photonics

Review the Publications Topic facet on the search results page

Publication Topics

Enter Topics

learning (artificial intelligence) (304)

~

- neural nets (111)
- telecommunication computing (40)
- mobile computing (37)
- convolutional neural nets (36)
- cloud computing (34)
- Internet of Things (31)
- feature extraction (31)
- 5G mobile communication (24)
- recurrent neural nets (24)
- optimisation (22)
- data analysis (18)
- deep learning (artificial intelligence) (18)
- computer vision (17)
- telecommunication traffic (17)
- Big Data (16)
- artificial intelligence (16)
- image classification (14)
- object detection (14)

Related Terms: Artificial Intelligence Neural Nets

Related Technologies: Internet of Things Cloud Computing Big Data 5G

Read the Introduction from a couple of magazine articles

The technique that has empowered these stunning developments is called deep learning, a term that refers to mathematical models known as artificial neural networks. Deep learning is a subfield of machine learning, a branch of computer science based on fitting complex models to data.

Deep learning, which is to say artificial neural networks with many hidden layers, is regularly stunning us with solutions to realworld problems. And it is doing that in more and more realms, including natural-language processing, fraud detection, image recognition, and autonomous driving. Indeed, these neural networks are getting better by the day. Broader Terms: Machine Learning Artificial Intelligence

Related Term: Artificial Neural Networks

Applications: Natural Language Processing Fraud Detection Image Recognition Autonomous Driving

Background Study

IEEE Xplore has a variety of search options

Global Search, Advanced Search, Command Search

IEEE *Xplore*: An Enhanced Search Experience

	Global Search	Advanced Search	Command Search
Boolean Operators (AND/OR/NOT)	Yes	Yes	Yes
Proximity Operators (NEAR/ONEAR)	Yes	Yes	Yes
Field Searching	Yes	Yes (using drop down menus)	Yes (using drop down menus)

Proximity Operators

Operator	Syntax	Find Results That
NEAR	<i>x</i> NEAR/# y	Match expression x within # words of y (x can appear before or after y)
		Example: implantable NEAR/5 cardiac
		Finds articles with the word <i>implantable</i> within five words
		of <i>cardiac</i> ; <i>cardiac</i> can come before or after <i>implantable</i>
ONEAR	<i>x</i> ONEAR/# y	Match expression x before and within # words of y
		Example: implantable ONEAR/5 cardiac
		Finds articles with the word <i>implantable</i> within five words of <i>cardiac</i> ;
		but <i>implantable</i> must come before <i>cardiac</i>
	Note: Comple	ex Boolean queries can be nested in proximity statements

EXAMPLE: ("self driving" OR autonomous) NEAR/2 (car OR vehicle)

Limit of 20 terms in a search clause (Items to the right of a Boolean operator)

AND

(health* OR medtech OR patient OR biomed* OR medical OR Search medicine)

Search

Clause

AND

(sensor OR biosensor OR acceleromet* OR wireless ORSearchmobile OR remote OR monitor OR biometric*)Clause

Stemming

- IEEE Xplore automatically finds pluralized nouns, verb tenses, and British/American spelling variations with some exceptions
- IEEE Xplore ANDs terms together by default
- To search for an exact phrase and turn off stemming, place the phrase within quotes

Wildcards

Character	Description
*	- Asterisk (*) represents a single character, multiple characters, or no characters
?	- Question mark (?) represents a single character

- Maximum number of wildcards per search: 7
- Minimum number of characters required to use a wildcard: 3
- Asterisk wildcards can be used at the beginning, middle, or end of a word EXAMPLES: *technology, wom*n, detect*
- Wildcards can also be used in phrased searches
 EXAMPLE: "software program*"

Search IEEE Xplore for "deep learning" AND photonic

Advanced Search @

|--|

Enter keywords and select fields.

Search Term	"	in	All Metadata	•	0
AND -	Search Term photonic	in	All Metadata	•	↑ ×
AND -	Search Term	in	All Metadata	•	↑ × +

Showing 1-25 of 304 for ("A	l Metadata":"deep learning") AND ("	All Metadata":photonic)×	
Conferences (177)	Journals (117)	 Early Access Articles (8) 	Magazines (2)
Show	Select All on Page	Sort By: I	Relevance 🗸
 All Results Subscribed Content ? Open Access Only 	 Silicon Photonic Neural Network B. J. Shastri; B. A. Marquez; A. N. 2020 Photonics North (PN) Year: 2020 Conference Paper 	as and Applications Tait; T. Ferreira de Lima; HT. Peng; C. Huang; P. R. Publisher: IEEE	Prucnal
Year 🗸	▶ Abstract HTML <u>大</u> 🧭		
Author 🗸	Data-driven Modeling Technique Danshi Wang: Yuchen Song: Min Z	for Optical Communications Based on Deep Lear	ning
Affiliation 🗸	2020 Asia Communications and Pr Information Photonics and Optical	notonics Conference (ACP) and International Conference Communications (IPOC)	nce on
Publication Title	Year: 2020 ∣ Conference Paper ∣ ▶ Abstract HTML <u></u>	Publisher: IEEE	

The Future of Deep Learning Is Photonic: Reducing the energy needs of neural networks might require computing with light

Publisher: IEEE

Cite This

Ryan Hamerly All Authors

 \bigcirc -- Accuracy & dynamic range of analog optical 133 / 1,000 Enter

Figures

Abstract

Document Sections

- I. Introduction
- II. Microgrid Control
- III. Integration Issue of Distributed Energy Resources
- IV. Strengths and Weaknesses of the Renewable Energy Sector
- V. Environmental and Socioeconomic Impacts of Renewable Energy
- VI. Grid-Connected PV Array

VII. Conclusion and Future Scopes

Abstract:

The importance of Microgrid has increased appreciably by the increasing demand of efficient green energy, clean, secure and sustainable electricity. Microgrid is a transformative architecture for the normal generation, adaptive and self-healing of electricity network. This article contributes a comprehensive review of the latest research in the area of advance control techniques and integration issue of distributed energy resources (DER) in the Microgrid. The distributed generators resources such as solar, wind, photovoltaic etc. has high penetration and its connection to the grid network through advance power electronics converters with energy storage devices, communication technologies and controllable loads, open new horizons for the successful development of Microgrid applications incorporated into power frameworks.

Published in: 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET)

 Date of Conference: 27-28 Dec. 2019

 Date Added to IEEE Xplore: 18 August 2020

 ▶ ISBN Information:

INSPEC Accession Number: 19892561 DOI: 10.1109/ICITAET47105.2019.9170223 Publisher: IEEE

Conference Location: Shegoaon, India

I. Introduction

SECTION VII. Conclusion and Future Scopes

Microgrid is usually composed of distributed energy resources, energy management system based controller, communication system, electric vehicle and demand response. This paper contributes a comprehensive and review of the recent control and integration issues of distributed energy resources with Microgrid. Microgrid may be connected islanded mode or on-grid mode for sustainable development and deals with economical, technical and environmental issues. The operation of Microgrid is to provide the optimal power flow in the distribution network. This paper addresses the different control technologies and different integration challenges such as power quality, reliability, resiliency of renewable energy resources with high Microgrid penetration and also explores current approaches used in Grid network. For the future scopes are, accelerated deployment of renewable energy technologies, cost reduction using incubating technologies with future potential, easier implementation and effective monitoring and maintenance, regular improvements in regulatory and policy initiative to promote renewable energy, subsidy support for government, developing and deploying financial instruments and strong monitoring and evaluation frameworks.

51

Use a Mind Map or Concept Map to organize your findings and narrow in on your research question

Photonics & Deep Learning: Challenges

- Accuracy & dynamic range of analog optical calculations
 - Optical processors suffer from various sources of noise
 - The digital-to-analog and analog-to-digital converters used to get the data in and out are of limited accuracy
- Industry demands higher precision for neural-network training
 - Google's TPU is an example of 8-bit electronic deep-learning hardware
- Integrating optical components onto a chip

Find Code, Multimedia, and Datasets

Year	Cited by: Papers (2) Patents (1)
Single Year Range	Abstract HTML 🔀 ©
1936 2022	 Holistic Web Application Security Visualization for Multi-Project and Multi-Phase Dynamic Application Security Test Results
From To 1936 2022	Ferda Ozdemir Sönmez; Banu Günel Kiliç IEEE Access Year: 2021 Volume: 9 Journal Article Publisher: IEEE
Author 🗸	Cited by: Papers (1)
Affiliation 🗸	Abstract HTML 🗾 C
Publication Title	 SecureComm 2007 Web and application security - Session 7 2007 Third International Conference on Security and Privacy in Communications Networks and the Workshops -
Publisher 🗸	SecureComm 2007 Year: 2007 Conference Paper Publisher: IEEE
Supplemental Items	▶Abstract 崖 ⓒ
 Datasets (10) Video (9) 	Aggregation process for implementation of application security management based on risk assessment
Code (4)	P. Nyrkov Anatoliy; F. Katorin Yuri; D. Gaskarov Vagiz; V. Kosyak Yana; V. Sauchev Aleksandr 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) Year: 2018 Conference Paper Publisher: IEEE

PDF & HTML Article Formats

Citations

Electronic ISSN: 2169-3536

Holistic Web Application Security Visualization for Multi-Project and Multi-Phase Dynamic Application Security Test Results

Publisher: I	EEE	📙 PDF						
Ferda Özder	nir Sönmez 💿	; Banu Günel Kiliç 🕲	All Authors					
1 Paper Citation	1222 Full Text Views				0	<	C	٠
Open A Under a Crea	ccess 🗩 C tive Commons L	comment(s)						
Abstract	t	Abstract:						

Abstract	Abstract:							
Document Sections	As the number of web applications and the corresponding number and sophistication of the threats increases, creating new tools that are efficient and accessible becomes essential. Although there is much research concentrating on network security							
I. Introduction	visualizations, there are only a few studies considering the web application vulnerabilities' possible visualization options.							
II. Related Work	vulnerability monitoring. This study forms a generic data struc	Jonsequentity, to fill this gap, this research centers around a novel perception configuration to improve web application vulnerability monitoring. This study forms a generic data structure based on data sources that might be readily associated and						
III. Process Description	commonly available for the majority of the web applications. T visualizing dynamic application security test results. Another c	he primary contribution of this study is a new dashboard tool for ontribution is the metrics/measures that the tool presents. The						
IV. Holistic Web Application	paper also describes a validation study in which participants a	nswered quiz questions upon using the tool prototype. For the						
Security Vulnerability	case study, sample data has been generated using the OWAS	P ZAP scanner tool and a prototype has been implemented to be						
Visualization, HWAS-V	used for validation purposes. This study allows the investigation of fifty metrics/measures for the multi-project/phase							
V. Case Study and HWAS-V	environment that enhances its benefits if the user aims to monitor a series of analyses' results and the changes between them for more than one web project.							
Show Full Outline -								
Authors	Published in: IEEE Access (Volume: 9)							
Figures	Page(s): 25858 - 25884	INSPEC Accession Number: 20324445						
References	Date of Publication: 04 February 2021 ?	DOI: 10.1109/ACCESS.2021.3057044						

Publisher: IEEE

Access Figures Within an Article

Abstract

I. Introduction

II. Related Work

Document Sections

The state of web application vulnerabilities between 2016 and 2019 [3] 1.

Visualization, HWAS-V

56

Right Click on Equations: Copy Source Code and Zoom In

The rapid risk assessment is based on the calculation and evaluation of the risk index R.


```
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block">

<mtable displaystyle="true">

<mlabeledtr>

<mtd id="mjx-eqn-1">

<mtext>(1)</mtext>

</mtd>

<mtd>

<mtock</mtock</pre>
```


Access References and Citations

Abstract	References
Document Sections	Citation Map
I. Introduction	 K. A. Demir, "A survey on challenges of software project management" in Software Engineering Research and Practice, Las Vegas, NV, USA:Stylus Publishing, 2009.
II. Related Work	▶ Show in Context Google Scholar
III. Process Description	2. B. Molnar and A. Tarcsi, "Architecture and system design issues of contemporary web-based information systems", Proc.
IV. Holistic Web Application	5th Int. Conf. Softw. Knowl. Inf. Ind. Manage. Appl. (SKIMA), pp. 1-8, Sep. 2011.
Security Vulnerability Visualization, HWAS-V	Show in Context View Article Full Text: PDF (146KB) Google Scholar
V. Case Study and HWAS-V	3. The State of Web Application Vulnerabilities in 2019, Jan. 2020, [online] Available: https://www.imperva.com/blog/the-
Show Full Outline 🕶	state-of-vulnerabilities-in-2019/.
Auth	▶ Show in Context Google Scholar 🖻
Fig	4. Software Testing Tips and Tricks, Jan. 2021, [online] Available: https://www.softwaretesttips.com/web-application-security-testing/.
References	▶ Show in Context Google Scholar 🛛
Citations	
Keywords	 Acunetix, Jan. 2019, [online] Available: https://www.acunetix.com/. Show in Context Google Scholar 2
Metrics	
Footnotes	

Download Citations

Personal Account: Features to Save IEEE Content

- Export articles to My Research Projects (up to 15 Projects with 1,000 documents)
- Saving a Search Alert: Limit of 15 saved searches, results delivered weekly
- Set defaults for number of results per page, citation downloads, and sort by
- Content, citation, and author alerts
- My Favorite Journal & Magazine bookmarks
- Search History: IEEE *Xplore* saves your last 100 searches

Set Preferences with an IEEE *Xplore* Personal Account

IEEE.org IEEE Xplore IEEE SA IEEE Sp	ectrum More Sites				Cart Welcome Paul Henriques Sign Out
	Ŋy Settings ✔ Help ✔	Accellent IEL Demo User	Sign Out		ØIEEE
	AlertsAlertsMy Research ProjectsAlertsMy FavoritesAlertsMyXploreAppPreferencesPurchase HistoryAlerts	Preferences Search Options Search All Metadata Full Text & Metadata Results Layout Title Only Title & Citatio Results Per Page Sont By 50	Full Text Only	Search History Recording	
61	Search History What can I access?	Publisher ALL IEEE IET OUP MIT Press Show More Citation Download Options Include	Format		EE
		Citation Only Citation & Abstract	Pormat Plain Toxt PibTox	RIS RefMorks	

My Research Projects

Create up to 15 Projects with 1,000 articles each to organize your research

🕸 IEEE

Access My Research Projects

Create new Projects and edit existing Projects

Cloud Computing

1 Document(s) Project Created: Jul 13, 2021

Project focusing on cloud computing topics

My Favorites: Journals and Magazines

Personal Account: Saved Search Alerts

Get new content as it is published

Personal Account: Content Alerts

Get updates as new content is published in your favorite IEEE publications

Personal Account: Citation Alerts

Alerts @

Manage your research quickly and efficiently with convenient email alerts. Alerts will be sent to paulshenriques@gmail.com. You can change your alert email address in Preferences

Journals & Magazines	Conferences	Standards	Citation	Saved Searches	Authors					
2030.6-2016 - IEEE Guide	e for the Benefit Evalu	ation of Electric Power	Grid Customer Deman	d Response		×	- 200	for a		
Incorporating benchmark programming in the teaching of undergraduate Computer Architecture James R. Moulic; Jacob D. See						×				
Centralized monitoring of the power electronics devices Miroslav Lazić; Dragana Petrović; Bojan Plavšić; Bojana Jovanović; Željko Kovačević						×	× Communications Conference Accelerating the Digital			
Real time indoor presence detection with a novel radar on a chip D. Deiana; E.M. Suijker; R.J. Bolt; A.P.M. Maas; W. J. Vlothuizen; A.S. Kossen					×	Transformatio Smart Commu 4–8 Decemb Rio de Janeir	n through unications per 2022 ro, Brazil			
Holistic Web Application Security Visualization for Multi-Project and Multi-Phase Dynamic Application Security Test Results Ferda Özdemir Sönmez; Banu Günel Kiliç					×	CALL FOR	PAPERS Now			
Citations	Date of	Publication: 04 February 2021 nic ISSN: 2169-3536	DOI: - Publis	10.1109/ACCESS.2021.305 sher: IEEE	7044	09–10 9:00 an	Pebruary 2022 n-12:30 pm (EST)	ComSoc		

67

Author Profile Enhancements

Follow This Author

- Ability to follow up to 15 authors
- Alerts generated weekly to notify users of new papers added to IEEE *Xplore* by author.

Gary S. May 🛛

Also published under: G. S. May, G. May, Gary May

Affiliation

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta,GA,30332

Publication Topics

three-dimensional integrated circuits, cooling, heat sinks, microfluidics, silicon, thermal management (packaging), copper, electroless deposition, elemental semiconductors, field programmable gate arrays, integrated circuit interconnections, Q-factor, biological tissues, biomedical equipment, brain, chip **Show More**

Biography

Gary S. May (Fellow, IEEE) received the B.S. degree in electrical engineering from the Georgia Institute of Technology (Georgia Tech), Atlanta, GA, USA, in 1985, and the M.S. and Ph.D. degrees in electrical engineering and computer science from the University of California at Berkeley, Berkeley, CA, USA, in 1987 and 1991, respectively.,He was the Dean of the College of Engineering, Georgia Tech, from 2011 to 2017, where he serves as the Chief Academic Officer and provides leadership to more than 400 faculty

Personal Account: Search History

Combine searches and export search history

IEEE Xplore Resources and Help

Indexed and searchable with helpful content on topics for users, librarians, and administrators

