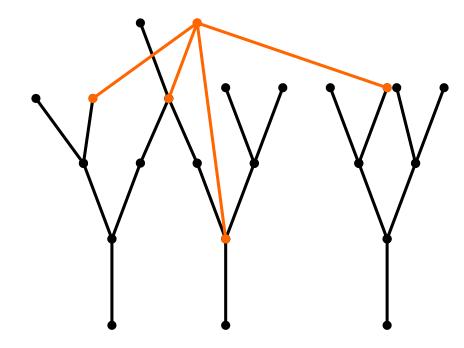

Scientific Work

Writing a Thesis in the STEM Field

Dr.-Ing. Claudia Krull

The scientific method


What is science?

Scientific progress

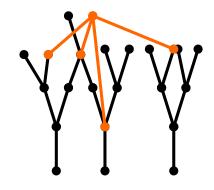
- Is a network of individual works
- Everyone builds on their precursor

What is happening?

- Extensions
- Corrections
- Syntheses
- Comparisons
- Improvements
- ...

Creating knowledge

"Wissenschaft = Wissen schaffen"


A scientist is someone who creates knowledge

The goal of scientific research is to gain new insights

Scientific research is related to questions

A scientific work answers a question

- The question must be new
- The answer must provide a new insight

How to proceed ...

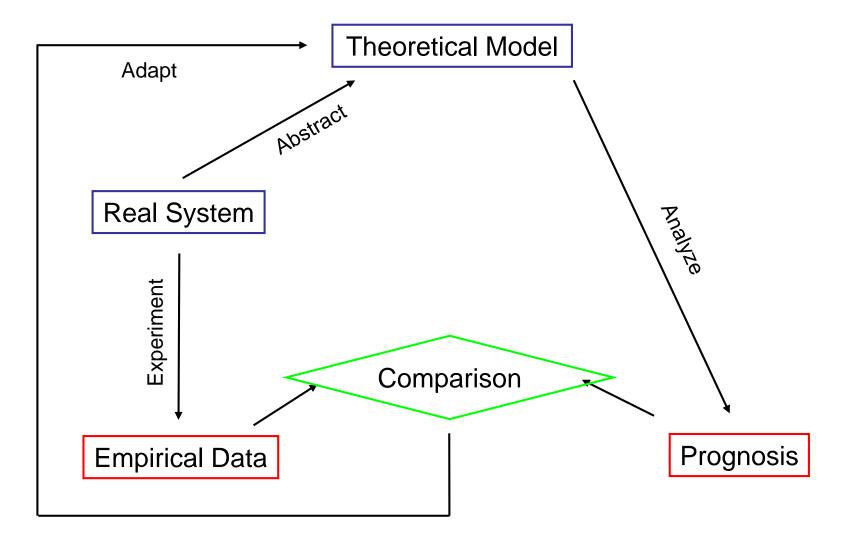
A Typical Research Study

A scientific study (in natural sciences) has four phases

Hypothesis:

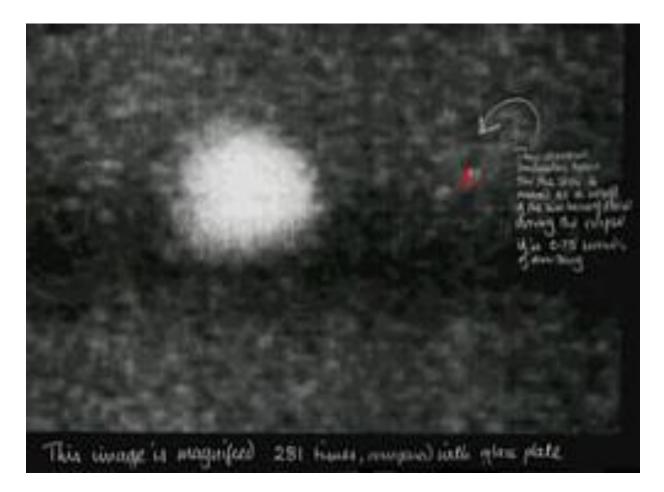
An assumption, how something works

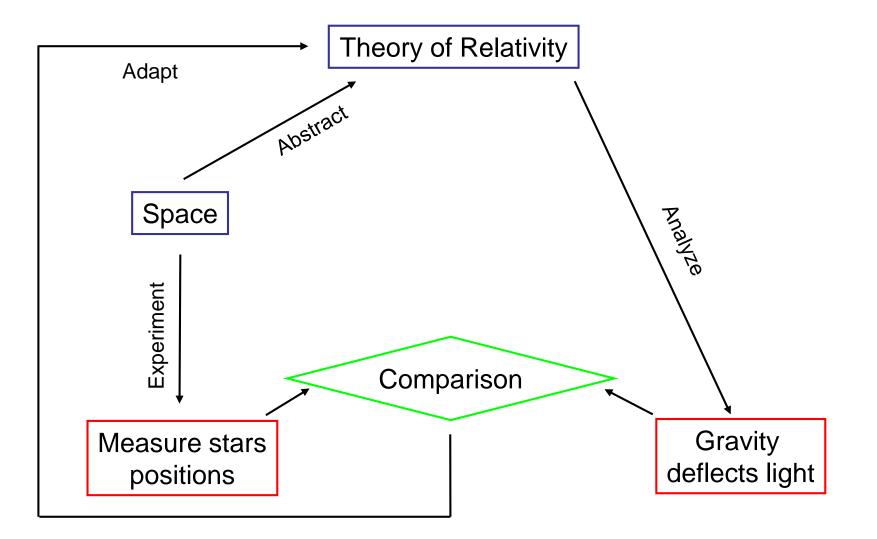
Prognosis:


- How something should behave according to the hypothesis
 Experiments:
 - Selective observations of reality

Interpretation:

Do these observations support the hypothesis?


Theory and Experiment


Example: Relativity

Example (Einstein 1915 / Eddington 1919):

Example: Relativity

Possible Publication Structure

General structure of a publication:

- 1. Theory X says, that [...]
- 2. This results in the prognosis, that [...]
- 3. We conducted the following experiment: [...]
- 4. The result of the experiment was, [...]
- 5. We therefore conclude, that theory X [...]

Engineering science

What is engineering science?

Definition of American Engineers' Council for Professional Development:

- The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, [...]
- or to forecast their behavior under specific operating conditions;
- all as respects an intended function, economics of operation and safety to life and property.

A typical engineering study

Engineering science questions often concern ...

- Functionality
- Efficiency

Typical questions can therefore be:

- How efficient is method <X>?
- Is procedure <X> suitable for problem <Y>?
- How efficient is technology <X>?
- What can a solution for problem <X> look like?

A typical engineering study

This means that one has to determine, ...

- What is "efficient"?
- What is "suitable"?
- What should the method be able to accomplish?
- What should be measured and why?
- What are the important performance parameters?
- What are possible failure points?

In general:

• What are the success criteria?

A typical engineering study

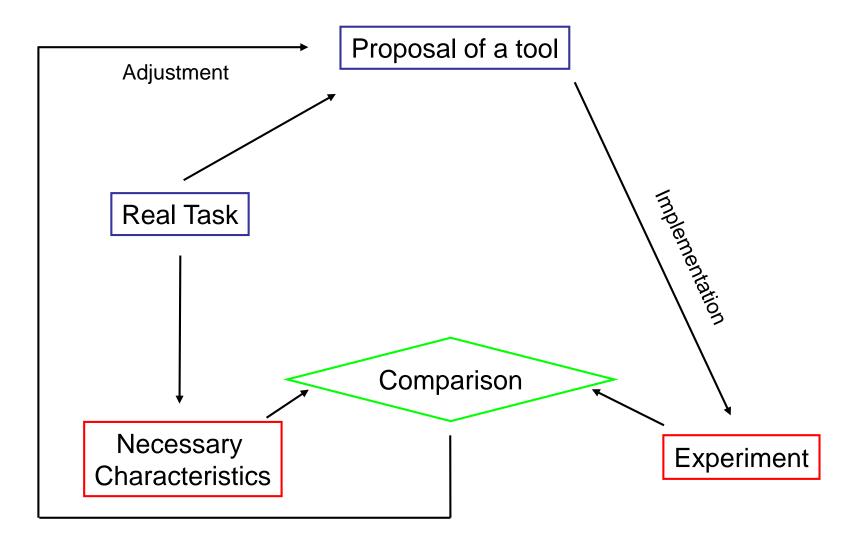
Task:

A task to be solved and criteria of a good solution

Solution approach:

A proposal how to solve the task

Implementation and experiments:


Implementation and testing of the proposal

Conclusion:

Is the proposal a suitable solution of the task?

Example: An engineering tool

Example: Engineering Tool

A possible publication structure:

- 1. The following task should be solved: [...]
- 2. A good solution has the following characteristics [...]
- 3. We propose the following tool: [...]
- 4. We built the tool as follows: [...]
- 5. Experiments with the tool showed, that [...]
- 6. We therefore conclude, that [...]
- 7. The consequences are [...]

Many Masters Thesis in Computer Science look like this

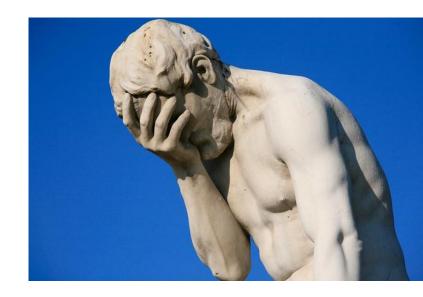
(or should look like this ⁽ⁱ⁾)

What should be avoided ...

Top Ten Planing Mistakes

Our "Top Ten-List" of mistakes when planing a thesis:

- 1. Don't plan
- 2. Don't agree on goals
- 3. Don't specify milestones
- 4. No buffer for failures and mishaps
- 5. Underestimate the time needed for bugfixing
- 6. Underestimate the time needed for literature research
- 7. Insuficient communication with your supervisor
- 8. Be done with implementation too late
- 9. Underestimate the effort when test subjects are involved
- 10. Expecting the copy shop to be open on Sunday ;-)

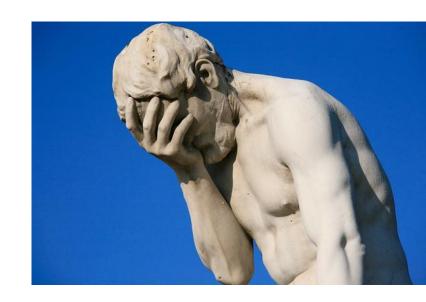

Writing Mistake #1

Writing mistake #1 in Masters and Bachelors theses:

They don't answer a question.

A scientific thesis is <u>not</u>...

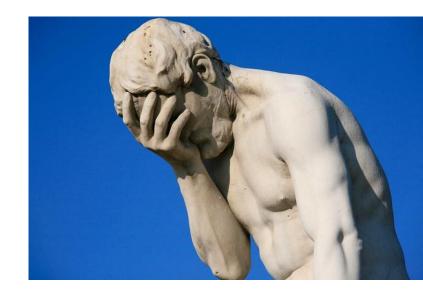
just a project report!



Writing Mistake #2

Writing mistake #2 in Masters and Bachelors theses :

They do not define (or motivate) success criteria.



Writing Mistake #3

Writing mistake #3 in Masters and Bachelors theses:

 They see what has been build as goal, not as means to an end.

(This leads to mistake #2.)

Typical Deficits

Bad theses are often similar

They exhaustively answer the questions

- What did I do?
- How did I do it?

They do not answer the questions

- Why did I do that?
- What is it good for?

Remember:

Science is about answering questions!

How can I avoid that ...

Goals

Every project must have a goal

The goal tells you when the project is complete

The goal of scientific research is to gain new insights

Scientific research is related to questions

Very important!:

• First determine the goal of the thesis!

NOT:

Just start to work – something useful will come up.

Goals

Example from Simulation Project

Task from the Magdeburg city planning office

An inappropriate project goal:

 Our goal is to develop a program to simulate the crossroad

A better project goal:

 Our goal is to determine, how to improve the safety for bicyclists at the crossroad.

Goal Agreement

We suggest that as a first stept for our students.

(To check whether they understand what lies ahead.)

Content

- Preliminary title
- Motivation (What is it about and why?)
- Goals (What shall be accomplished?)
- Boundary conditions (What has to be considered?)
- Success criteria (How to determine, whether the thesis was successful?)
- Benefit (How can the result be useful?)
- Schedule (Registration → Draft Version
 → Preliminary Version → Submission)
- Signatures

The Draft Version

What is meant by a Draft Version?

More than just the thesis structure

Contains all planned statements

- BUT only as phrases and bullets
- Not including all diagrams and pictures

Advantages:

- Forces to collect all thoughts
- Good basis for meeting with supervisor
- Not a lot of effort needed yet

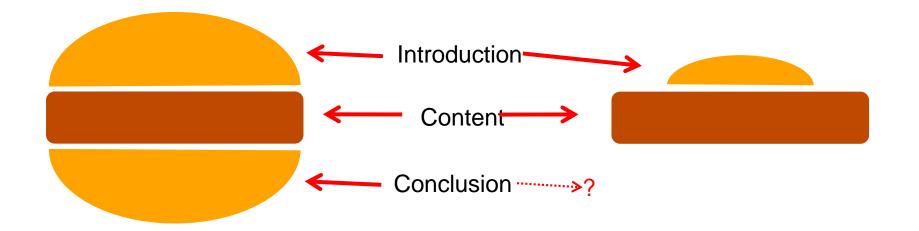
4	Standardisierung
4.1	Warum Standard?
4.1.1	Gefahren bei "Insellösungen"
•	Entwicklungen gehen in verschiedene Richtungen
•	Verschiedene Voraussetzungen/Berechnungsgrundlagen für gleiche Ken zahlenbezeichnung
•	Arbeitstunden, die jeder investiert
•	Wartung der Anwendung kann nicht gewährleistet werden (Support)
•	Was wenn Ersteller Abteilung verlässt? Know-How geht im schlechtest Fall mit ihm
4.1.2	Potentiale des Verfahrens nach Standardisierung
•	Ein Tool für alle Werke macht diese vergleichbar
•	Stehts aktuelle Kennzahlen → Nutzung für Prozessoptimierung
•	De-Bottlenecking ohne Simulation: Sven's Grafik (Welche Anlagen scha fen die geforderten Stückzahlen, welche nicht)
4.2	Möglichkeiten der Realisierung
4.2.1	ZSim vs. IPS-T
•	Was ist die ZSim?
•	Was ist IPS-T?
	↑ Meine Studienarbeit und Intranet
	Gegenüberstellung der Eigenschaften und Funktionen in Tabelle
•	Vorteile und Nachteile
•	Vorteile und Nachteile ZSim vorgeschen für die Simulation
•	ZSim vorgesehen für die Simulation

The Topic–Burger

Every section needs three parts

- An introduction
- The actual content
- A conclusion

Introduction:


• What will follow and why?

Conclusion:

Summary / Meaning / Assessment

The Topic–Burger

The Topic–Burger

These three elements are needed on all levels

- For the whole work
- In every chapter
- In every section

Badly written theses:

Are just a concatenation of meet loafs

Consequences:

- Tiring for the reader
- The author misses the oportunity to shine

What if I don't make progress ...

Help, I got writer's block!

Writer's block – weak strategies

Trial and error

- Working on phrasing in our head leads to rejecting the same phrases again and again
- Jot down variants and pick one

Insisting on a perfect draft

- A recipe for writer's block!
- It's more efficient to go through several drafts focusing on different goals

Waiting for inspiration

- Sometimes it works. Often you just sit there and get depressed
- Try some of the powerful strategies to get some inspiration

Words looking for an idea

- Be wary of phrases like "due to the fact that" or "it's imperative to say"
- They give an illusion of progress, but it's easer to say something when you know what you want to say

Writer's block - powerful strategies

Make notes as they appear to you

 Use a notebook, piece of paper, blog, editor, ..., to jot down your ideas before you forget them

Freewriting

- Use this when you are stuck
- Write for 10mins without pausing
 - When you run out of things to write, feel free to write "bla bla bla"
 - If ideas away from your topic surface, write them down, too

Brainstorming

- Decide on a topic and your goal for that topic
- Jot down ideas without censoring for usefulness or prose style

Writer's block - powerful strategies II

Piecework

 Once you know the rough outline of your work, start writing the section you know most about

What I really mean is (WIRMI)

- Use this phrase and then write down the idea the way you think it is
- Now you know what you need to rephrase

Satisficing (satisfy + suffice)

- Take the first reasonable solution instead of searching for the perfect word or phrase
- You can always revise afterwards

Writer's block – more strategies

- Eat the right food
- Go for a walk
- 30 seconds dance party
- Take a break

Final thoughts ...

Ten (more) Tipps

Ten Tips for Writing a Theses :

- 1. Choose a supervisor who understands his stuff
- 2. Choose a topic that you are interested in
- 3. Know the expectations of your supervisor
- 4. Agree on and fix a topic, goal, tasks and plan
- 5. Choose your second reviewer early on
- 6. Mind: The utility of a plan is in planning
- 7. Mind: It always takes longer than you think!
- 8. Other people always cause delays
- 9. Use a Draft Version
- 10. Always remember: You want to answer a question!

Caveat

This script contains many suggestions

These are from our perspective only

Supervisors are ...

- often headstrong
- always different

Therefore:

- Do not rely on this script solely
- Always ask the opinion of your reviewer!

Thank you for your attention