Cell Death and Differentiation (2017) 24, 1739-1749
Official journal of the Cell Death Differentiation Association

OPEN

www.nature.com/cdd

CTLA-4-mediated posttranslational modifications
direct cytotoxic T-lymphocyte differentiation

Holger Lingel, Josef Wissing?, Aditya Arra', Denny Schanze®, Stefan Lienenklaus*, Frank Klawonn?®°, Mandy Pierau’, Martin Zenker®,
Lothar Jansch*2 and Monika C Brunner-Weinzier!*'

The blockade of inhibitory receptors such as CTLA-4 (CD152) is being used as immune-checkpoint therapy, offering a powerful
strategy to restore effective immune responses against tumors. To determine signal components that are induced under the
control of CTLA-4 we analyzed activated murine CD8* T cells by quantitative proteomics. Accurate mass spectrometry revealed
that CTLA-4 engagement led to central changes in the phosphorylation of proteins involved in T-cell differentiation. Beside other
targets, we discovered a CTLA-4-mediated induction of the translational inhibitor programmed cell death-4 (PDCD4) as a result of
FoxO1 nuclear re-localization. PDCD4 further bound a distinct set of mRNAs including Glutaminase, which points out a critical role
for CTLA-4 in CD8* T-cell metabolism. Consequently, PDCD4-deficient cytotoxic T-lymphocytes (CTLs) expressed increased
amounts of otherwise repressed effector molecules and ultimately led to superior control of tumor growth in vivo. These findings
reveal a novel CTLA-4-mediated pathway to attenuate CTLs and indicate the importance of post-transcriptional mechanisms in the

regulation of anti-tumor immune responses.
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Cytotoxic T-lymphocytes (CTLs) are the effector cells of the
adaptive immune system that exclusively recognize MHC-I
presented antigens, thus having a central role in the
recognition and clearance of malignant cells."? A complex
interplay of stimulatory and inhibitory receptor-ligand interac-
tions, as well as inflammatory cytokines orchestrate the
activation of CD8" T cells and their differentiation into CTLs.®

To control the magnitude of T-cell responses, the inhibitory
surface receptor CTLA-4 has been identified as a primary
attenuator of T cells.*® Furthermore, CTLA-4 is overex-
pressed in exhausted CTLs during chronic diseases alongside
other inhibitory receptors such as PD-1 (ref. 6). Its blockade
during immune-checkpoint therapy promisingly restores anti-
tumor immunity in mice and men.”~® CTLA-4 has already been
shown to be involved in the regulation of CD8" T cells;'""
however, the mechanisms by which CTLA-4 controls CTL
responses still remain incompletely understood. Because of
the temporary delayed increase of receptor expression,
CTLA-4 strongly impacts on highly activated cells with already
established transcription profiles.'? We therefore hypothesize
that CTLA-4 could exploit posttranscriptional or -translational
mechanisms to modulate CD8* T-cell differentiation.

In this study we characterized the phosphoproteome
response that resulted from CTLA-4 engagement in activated
CD8" T cells by using iTRAQ quantitative mass spectrometry.
The analysis identified previously unknown targets and

mechanisms how CTLA-4 affects CD8" T-cell differentiation.
We confirmed that CTLA-4-mediated mechanisms abrogated
the phosphorylation of the AP-1 family transcription factor Fos-
related antigen 2 (Fra-2) and led to a nuclear re-localization of
the central transcription factor FoxO1, which caused a strong
induction of the translational inhibitor programmed cell death-4
(PDCDA4). Strikingly, PDCD4-deficient CTLs showed enhanced
production of the otherwise repressed effector molecule IFN-y
and loss of PDCD4 ultimately resulted in superior control of
tumor growth in vivo. This novel pathway delineates how
CTLA-4 is able to regulate CD8" T-cell differentiation and the
identified mechanisms further provide new strategies to
improve anti-tumor immune responses.

Results

CTLA-4 modulates central CD8" T-cell processes. To
identify novel proteins and signaling mechanisms exclusively
targeted by CTLA-4 in CD8" T cells, we performed a comp-
arative mass spectrometry analysis of phosphorylated proteins
from cells that were differentiated in vitro with or without CTLA-4
engagement concomitant with a CD3 and a CD28 activation
(Supplementary Figure S1a upper).* To control the effective-
ness of CTLA-4-mediated signals we monitored CD8* T cells by
flow cytometry. The cells showed equal activation on day 1 as
controlled by proliferation, CD62L downregulation, CD44 and
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T-bet expression; however, CD8" T cells that received a CTLA-4
stimulus had 55% less IFN-y producers on day 2 and less than
one-fifth on day 3 (Supplementary Figures S1b-d), which

proved a strong impact of CTLA-4-mediated effects.'® Interest-
ingly, CTLA-4-triggered CTLs showed a pronounced re-exp-
ression of CD62L on day 2 (Supplementary Figure S1d).
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After 48 h of stimulation, which marked the time-point of
maximal CTLA-4 expression (Supplementary Figure S2a), the
phosphorylated proteins were isolated, digested and the
resulting phosphopeptides were measured for their abun-
dance in two independent biological replicates. These
analyses led to the detection of 89 phosphopeptides belong-
ing to 74 proteins that were differentially regulated upon
CTLA-4 engagement. Sixty-three of 89 peptides showed
enhanced phosphorylated residues while 26 peptides were
less phosphorylated. Among these proteins, PKC-n and
VAV-1 have already been connected to CTLA-4.'*'5 As
targets with multiple affected phosphopeptides, NUCKS and
PDCD4 were found to be the most upregulated ones, whereas
Fra-2 was the strongest dephosphorylated protein (Figure 1a
and Supplementary Table S1). The analysis of phosphoryla-
tion motifs in the CTLA-4-regulated phosphopeptides revealed
specific but also common patterns like RxxS of overrepre-
sented amino acid residues in down- and upregulated sites
(Figure 1b). The RxxS motif could be recognized by PKA or
CaMKiIl."®

Furthermore, by using BABELOMICS functional annotation
analysis software'” we could allocate these proteins to six
major GO:BP categories namely cytokine production, T-cell
activation, RNA processing, mRNA metabolism, DNA replica-
tion and regulation of microtubule-based processes
(Supplementary Table S2). These specifically enriched
clusters further suggest a role for CTLA-4 in modulating
central processes of CD8" T-cell differentiation. With the
NetworkAnalyst software'® we created a interaction-network
of 67 detected or predicted proteins with 81 connections.
Proteins involved in the processes of T-cell activation and
cytokine production are more closely connected than the
proteins of the other functional clusters, rendering the former
as primary CTLA-4 targets. Furthermore, this analysis
revealed the central transcription factor FoxP3 as a central
interaction hub for CTLA-4-regulated proteins (Figure 1c)."®

To analyze the extend of CTLA-4-mediated posttransla-
tional modifications we further characterized the hypopho-
sphorylation of the AP-1 family transcription factor Fra-2,
which functions as a key regulator of T-cell differentiation.?® As
Fra-2 forms several bands in mobility gel shift assays upon
phosphorylation we analyzed nuclear extracts of CD8* T cells
by immunoblotting.?' On day 1, Fra-2 showed an equal
phosphorylation pattern of three mobility gel shift bands in
both CTLA-4-triggered and control cells, which was main-
tained in the latter over the following 2 days. CTLA-4
engagement however consistently led to a more than
sevenfold reduction of Fra-2 phosphorylation forms in CD8"
T cells on day 2 and 3 (Figure 2a). To confirm that Fra-2
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regulation is attributed to posttranslational effects, Fra-2
(Fosl2) mRNA was quantified and showed similar amounts
in all stimulated samples (Figure 2b). Among the kinases that
are able to phosphorylate Fra-2 we tested the involvement of
PKA. The application of the specific PKA inhibitor 14-22 amide
led to a more than 30% decreased formation of the slow
(upper) and fast (lower) migrating Fra-2 phosphorylation forms
in control cells, whereas increased PKA activity due to
incubation with the cAMP elevator Forskolin specifically
intensified those phosphorylation forms more than six times
in CTLA-4-triggered cells (Figure 2c).

Collectively, these findings substantiate the significance of
the mass spectrometry dataset for the identification of
CTLA-4-mediated signaling effects and further revealed that
hyperphosphorylation of Fra-2 integrates PKA signaling in
differentiating CD8" T cells.

CTLA-4 interferes with translation initiation via PDCD4
induction. The iTRAQ mass spectrometry data revealed that
CTLA-4 mediated a strong phosphorylation of the translational
inhibitor PDCD4 at S94 and S457 (Figure 1a and Supple-
mentary Table S1), which could function as a capable post-
transcriptional regulator.?® First, we complemented our pro-
teome results and analyzed PDCD4 S457 phosphorylation as
well as total abundance by immunoblotting. Consistent with
temporal CTLA-4 expression, we detected on day 2 and 3 a
four- to fivefold increase of PDCD4 levels in CTLA-4-triggered
CD8" T cells. The protein was continuously phosphorylated
and exclusively distributed in the cytoplasm of CD8" T cells,
where it can interfere with translation initiation (Figure 3a). To
fulfill this function, PDCD4 has been shown to interact with the
RNA helicase elF4A to prevent the association of elF4G.2® To
proof this relationship in CD8* T cells, we conducted elF4A IPs
and quantified the amounts of co-immunoprecipitated elF4G
by immunoblotting.2* Thereby, we detected threefold lower
elF4G protein amounts in elF4A precipitates from CD8* T cells
differentiated with additional CTLA-4 engagement when
compared with precipitates from control cells (Figure 3b).

In conclusion, we revealed a CTLA-4-mediated induction of
the translational inhibitor PDCD4 that is localized in the
cytoplasm where it interferes with protein translation initiation
during CD8" T-cell differentiation.

PDCD4 attenuates IFN-y and anti-tumor responses of
CTLs. PDCD4 has originally been connected to apoptosis.®®
However, in this regard the analysis of Pl and Annexin V
staining showed no difference between WT and PDCD4-
deficient CD8* T cells (Supplementary Figure S3). Further-
more, PDCD4 has been shown to regulate the cytokine

<

Figure 1 CTLA-4 modulates the phosphoproteome in differentiating CD8" T cells. (a) Comparative phosphorylation profile of significantly (P< 0.05) regulated proteins in
CD8* T cells from day 2 after differentiation with & CD3, o CD28 and additional CTLA-4 engagement or not, acquired by iTRAQ mass spectrometry in two independent
experiments (E1, E2). Proteins were aligned according to GO:BP semantic relations.>* Blue and red represent low and high relative phosphorylation, respectively. Refer to
Supplementary Table S1 for complete data. (b) Significantly (P< 0.001) overrepresented amino acid residues in motifs containing dephosphorylated (left panel; blue) or stronger
phosphorylated (right panel; red) serine residues in CD8" T cells upon CTLA-4 engagement. Sequences (+7 residues) of the identified sites in (a) were analyzed with the
PhosphoSitePlus motif analysis generator using the exhaustive 1-2 AA algorithm.*® (c) Possible interactions of the CTLA-4-affected proteins from a analyzed by the
NetworkAnalyst software.'® A GO:BP enrichment analysis was performed to highlight functional subsets significantly (P<0.001) affected by CTLA-4 engagement. See also

Supplementary Table S2
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Figure 2 CTLA-4 mediates Fra-2 dephosphorylation during CD8* T-cell
differentiation. (a) Immunoblot analysis of total and phosphorylated Fra-2 in nuclear
extracts of CD8" T cells from day 1, 2, and 3 after differentiation with « CD3, « CD28,
and additional CTLA-4 engagement or not. (b) Fos/2 (Fra-2) mRNA expression profile
of CD8" T cells after differentiation as described in (a). (¢) Immunoblot analysis of
phosphorylated Fra-2 (p-Fra-2) in nuclear extracts from day 2 of CD8" T cells after
differentiation as described in (a), treated for 60 min with vehicle, 14-22 amid or
Forskolin. Numbers represent relative protein amounts of the phosphorylated gel
mobility shifts normalized as indicated. Data are representative of n=2-3
independent experiments. Data points represent individual mice with mean+S.D.
ns, not significant, calculated by Mann-Whitney test

production of activated splenocytes and to be involved in
autoimmune inflammation.?® To exclusively determine the
function of PDCD4 in physiologically activated CTLs, we
cultured TCR transgenic CD8" T cells from OT-I mice
together with Ovalbumin-pulsed APCs (Supplementary
Figure S1a lower) and controlled PDCD4 expression by
immunoblotting as well as IFN-y production by flow cytometry.
Within the first 3 days, there was no detectable up-regulation
of PDCD4 in CD8* T cells that lack CTLA-4 expression,
whereas CTLA-4 sufficiency led to threefold increased
PDCD4 amounts at 72 h after T-cell activation (Figure 3c).
Moreover, TCR transgenic PDCD4-deficient CD8* T cells
consistently showed 3-fold higher IFN-y levels on day 3 in
comparison to WT cells (Figure 3d). Notably, the absence of
PDCD4 neither impaired CTLA-4 expression nor led to
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changes in the proliferative capacity of the cells (Supplem-
entary Figures S2b and c).

CTLA-4 has been proven to restrict immune responses
against malignant cells.”® To initially assess a functional
relevance of CTLA-4-induced PDCD4 expression for anti-
tumoral CTL responses we compared the ability of TCR
transgenic PDCD4- or CTLA-4-deficient CTLs to control the
growth of Ovalbumin expressing B16 melanoma cells in an
adoptive transfer model. On day 8 after T cell transfer, the
mean tumor volume was more than fivefold smaller in mice
that received PDCD4~/~ CD8" T cells when compared with
control mice (Figures 4a and b). We next analyzed the
activated transferred peripheral CD8* T cells regarding their
relative abundance and capacity to produce IFN-y. Consis-
tently, PDCD4 deficiency led to significantly increased IFN-y
levels in the in vivo activated PDCD4~/~ CD8* T cells whereas
the numbers of antigen-specific CD8" T cells did not
significantly differ (Figure 4c).

Similar to the systemic effect of CTLA-4-blocking anti-
bodies, we finally tested mice that completely lacked PDCD4
expression for their capacity to control tumor implantation.
We therefore inoculated luciferase-expressing tumor cells in a
prostate cancer model that had been shown to be susceptible
for immune-checkpoint therapy.® The PDCD4-deficient
as well as CTLA-4-blocked WT mice showed enhanced
regression of implanted tumors when compared with
untreated PDCD4-sufficient mice. Moreover, all PDCD4~/~
mice showed complete tumor rejection within two weeks,
whereas only three of nine WT mice were tumor-free until
day 14 (Figures 4d and e).

Taken together, these data demonstrated an important role
for the translational inhibitor PDCD4 in the downregulation of
the IFN-y production in CTLs and implicated this mechanism
of restricted protein expression to be critical for anti-tumor
responses.

CTLA-4-mediated nuclear relocalization of FoxO1
promotes the expression of PDCD4. To clarify a possible
regulation of PDCD4 due to ubiquitin ligase mediated protein
degradation,®*2” we applied a proteasomal inhibitor during
stimulation of CD8" T cells. Despite a strong accumulation of
ubiquitinated proteins, the immunoblot analysis showed no
alteration in the relative PDCD4 abundance and therefore no
involvement of this mechanism in the CTLA-4-mediated
regulation of PDCD4 (Figure 5a). We further ruled out an
implication of the PDCD4-targeting miR-21,%® as evenly
distributed micro-RNA levels could be detected (Figure 5b).
The quantification of Pdcd4 transcripts revealed a consis-
tent abundance of mRNA levels in comparison with the
respective protein amounts, suggesting a regulation of
PDCD4 through mRNA expression (Figures 5¢ and 3a).
PDCD4 has been shown to be induced by the Foxo
transcription factor.?® In murine regulatory T cells, FoxOf1
has been confirmed to bind within the 5’-UTR of the Pdcd4
gene and loss of FoxO1 leads to decreased Pdcd4
mRNA levels.*° To assess the impact of FoxO1 on PDCD4
expression in CD8* T cells, we applied an inhibitor of
FoxO1 transactivation 24 h after beginning of T cell activation,
which completely prevented the induction of PDCD4
(Figure 5d). Furthermore, we performed a Foxo1 deletion
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Figure 3 CTLA-4 induces PDCD4 to restrict protein translation and IFN-y production. (a) Immunoblot analysis of PDCD4 (total and S457-phosphorylated) in subcellular
extracts of CD8" T cells from day 1, 2 and 3 after differentiation with « CD3, « CD28 and additional CTLA-4 engagement or not. (b) Immunoblot analysis of elF4A
immunoprecipitates (IP) or whole cell lysates (WCL) of CD8" T cells from day 2 after differentiation as described in a treated with Cycloheximide prior protein extraction. The
co-immunoprecipitated elF4G was quantified to elf4A (right panel). (¢) Immunoblot for PDCD4 (total and S457-phosphorylated) in whole-cell lysates of TCR-transgenic CTLA-4
WT or deficient OT-| CD8" T cells from day 2 and 3 after differentiation with APCs and OVA. (d) IFN-y production of TCR-transgenic CTLA-4 and PDCD4 WT or CTLA-4- or
PDCD4-deficient OT-I CTLs differentiated as described in (¢). IFN-y-positive cells were determined by flow cytometry and normalized to WT. Numbers represent relative protein
amounts normalized as indicated. Data are representative of n=2-4 independent experiments. Data points represent individual mice with mean+S.D. *P<0.05; ns, not
significant, calculated by Mann-Whitney test for (b) or by Kruskal-Wallis test with Dunn’s correction for (d)

through transduction of Foxo1™ CD8* T cells with TAT-Cre
recombinase.®' This treatment led to both reduced FoxO1
and decreased PDCD4 protein levels with a concomitantly
elevated production of IFN-y (Figure 5e). Thus, PDCD4
upregulation is primarily dependent on FoxO1.

Upon T-cell activation, FoxO1 is regulated by a highly
conserved mechanism that involves phosphorylation by Akt,
leading to its cytoplasmic retention and subsequent

inactivation.®23® Hence, we analyzed the cellular distribution
of FoxO1 as well as phosphorylation events by immunoblotting
to confirm CTLA-4-mediated FoxO1 activity. After 6 h of
stimulation we consistently detected a strong Akt activation
in all cells as determined by T308 and S473 phosphorylation.
At the same time, FoxO1 was equally phosphorylated at the
Akt site S253 and consequently localized in the cytoplasm.
However, at 48 h FoxO1 was strongly enriched in the nuclei of

Cell Death and Differentiation
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CD8" T cells that were differentiated with additional CTLA-4
engagement despite an equal reduction of Akt and FoxO1
phosphorylation in both CTLA-4-triggered and control cells
(Figure 5f).

We therefore conclude that CTLA-4-mediated mechanisms
led to an Akt-independent nuclear relocalization of the
transcription factor FoxO1, resulting in augmented gene
expression of the translational inhibitor PDCDA4.

Targets of PDCD4 are critical for CTL responses. PDCD4
directly associates with mRNAs to repress the translation of
the corresponding proteins.* To identify PDCD4 targets in
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CTLs we immunoprecipitated PDCD4 and subsequently
sequenced the co-precipitated RNA fraction. The sequencing
data revealed mRNA molecules derived from 21 different
genes to be significantly enriched in the PDCD4 preci-
pitates (Figure 6a and Supplementary Table S3). Among
these targets, Glutaminase (Gls) and SENP3 have been
shown to be essential for cellular metabolism and
biosynthesis, thus playing a critical role in CTL
responses.®*% We finally sought to compare the in situ
mRNA levels of Gls and Senp3 with the respective protein
amounts to prove a direct effect of PDCD4 on the translation
of these targets. Despite similar mRNA amounts, the
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Figure 5 CTLA-4 mediates PDCD4 expression via FoxO1 reactivation. (a) Immunoblot analysis of PDCD4 and ubiquitinated proteins in CD8" T cells from day 2 after
differentiation with « CD3, & CD28 and additional CTLA-4 engagement or not, treated for 2 h with vehicle or MG132 prior cell lysis. (b) miR-21 or (c) Pdcd4 mRNA expression
profile of CD8* T cells after differentiation as described in a. (d) Immunoblot analysis of PDCD4 in CD8" T cells from day 1 and 2 after differentiation as described in a, treated on
day 1 for 24 h with vehicle or AS1842856. (€) Immunoblot analysis of whole-cell lysates of Foxo1"" CD8* T cells from 60 h after treatment with TAT-Cre recombinase or not (Mock)
followed by differentiation with @ CD3, « CD28 and additional CTLA-4 engagement. Cells were further analyzed by flow cytometry for IFN-y production (lower panel). (f)
Immunoblot analysis of FoxO1 (total and S253-phosphorylated) and Akt (pan and T308- or S473-phosphorylated) in subcellular extracts of CD8" T cells from 6 and 48 h after
differentiation as described in (a). Data are representative of n=2—-4 independent experiments. Numbers represent relative protein amounts normalized as indicated. Data points
represent individual mice with mean+S.D. *P<0.05; ns, not significant, calculated by Mann-Whitney test

Glutaminase and SENPS3 protein levels were more than 50%
lower in WT CD8" T cells than in their PDCD4-deficient
counterparts (Figure 6b and Supplementary Figure S2d). To
further asses the influence of PDCD4-mediated effects on
cellular glutaminolysis of CTLs we supplemented activated
CD8" T cells with glutamate. This treatment resulted in a
significant increase in the IFN-y production of WT cells
(Figure 6c).

Together, these data show how CTLA-4-induced expression
of PDCD4 might attenuate CD8" T cell effector functions,
leading to abrogated anti-tumor responses.

Discussion

In this study we conducted a comprehensive analysis of
CTLA-4-mediated intracellular changes in differentiating
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by Mann-Whitney test

CTLs, which are a central part of the effector response towards
antigenic tumors. The differentiation of naive CD8" T cells is
characterized by an early commitment to an autonomous
developmental program.®” After 48 h, CTLA-4 is strongly
expressed on the surface of CD8" T cells, that continue to
differentiate in absence of further activation and which already
peak in gene transcription.'?3® Consequently, CTLA-4 needs
to act in a modulatory manner to attenuate CTLs responses
rather than to solely ablate their stimulation.® In this study, we
identified 89 CTLA-4-responding phosphorylation sites at 74
different proteins supporting the notion of CTLA-4-mediated
posttranscriptional or -translational modifications of already
established signaling circuits. Importantly, the applied differ-
entiation system* enabled similar initial stimulation of all CD8*
T cells as verified by uniform values for every analyzed
parameter 24 h after beginning of the stimulation. On day two,
an inverse relation between IFN-y and CTLA-4 was detect-
able, which has been previously reported for CD8* T cells.""'3

The mass spectrometric analysis provided unprecedented
details on the signal network downstream of CTLA-4 and
focusing on phosphorylated components significantly facili-
tated the detection of novel mechanisms. However, a further
analysis of the phospho-proteins is required to characterize
the identified regulation as a direct phosphorylation event.
Interestingly, the protein interaction approach contributed
several CTLA-4-regulated proteins capable to associate with
the regulatory T-cell factor FoxP3.'® Furthermore, the dis-
covered CTLA-4-dependent phosphorylation of PKC-n at
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S675 adds valuable information to the previously for Treg
cells described interaction.' Therefore, the findings in this
study might also give indications for CTLA-4-mediated
functions in other lymphocyte subpopulations.

The identification of common phosphorylation motifs implies
the involvement of multiple kinases. In this regard, we
characterized the phosphorylation of the AP-1 family tran-
scription factor Fra-2 (Fosl2) which has been implicated in
T-helper cell differentiation.?® Consistently, we demonstrated
in activated CD8* T cells an initial strong phosphorylation
leading to the formation of several gel mobility band shifts and
that CTLA-4 engagement completely abrogated these pos-
translational modifications.2" This could be due to a regulation
of the activity or the nuclear shuttling of the responsible
kinases. Notably, Fosl2 gene expression has recently been
identified to be regulated in exhausted CD8" T cells.*°

One of the most powerful CTLA-4-controlled proteins was
the translational inhibitor PDCD4 that functions as a crucial
posttranscriptional regulator.?> The central impact of the
CTLA-4-PDCD4 axis could be unambiguously demonstrated
in several independent in vitro and in vivo settings, delineating
the cell- and context-specific role of PDCD4 in attenuating
effector responses of CTLs. This appears to be unlike to B
lymphocytes, were PDCDA4 is primarily involved in maintaining
cell quiescence.?® As the blockade of CTLA-4 is applied in
tumor therapy, we initially assessed the role of its newly
identified downstream target PDCD4 in the impairment of anti-
tumor CTL responses. Our data demonstrate that a general



and a CD8" T-cell-specific deficiency of PDCD4 led to
improved control of tumor growth. We consistently observed
increased IFN-y levels in PDCD4-deficient CTLs that could be
responsible for an enhanced anti-tumor activity.*' Although
CD8* T cells are the main effectors of the adaptive immune
system that lyse malignant cells, a concomitant suppression
through CTLA-4-expressing regulatory T cells further
accounts for ineffective immune responses against tumors.*?
It is tempting to speculate that PDCD4 as a FoxP3 interacting
and FoxOf1-induced protein has likely a critical role in
regulatory T cells as well, strengthening PDCD4 as a
promising target for therapeutic interventions.'®-%°

Furthermore, the identified main target of PDCD4 in CTLs,
the rate-limiting enzyme Glutaminase, serves as a metabolic
checkpoint during cell differentiation and has an important role
in the anti-tumor response, as its substrate glutamine provides
an essential source for the cellular metabolism of CTLs in the
glucose-deprived tumor microenvironment.®>#3 In line with the
function as a translational inhibitor, we revealed that PDCD4
expression caused a downregulation of the SUMO-specific
protease SENP3, which has been shown to act as a crucial
factor in ribosome biogenesis.36 In conclusion, CTLA-4-
mediated PDCD4 expression induced a defined restriction of
protein translation that critically shaped the quality of CTLs
leading to impaired anti-tumor responses.

The global blockade of CTLA-4 impinges on more than one
pathway, which is also reflected by the detected positive
feedback of CTLA-4 on FoxO1. This transcription factor not
only regulated PDCD4 expression but furthermore controls
several proteins critical for CD8" T-cell differentiation-like
CD62L or TCF-1.**¢ Thus, dissecting CTLA-4-initiated
pathways might identify targets which primarily control single
aspects of anti-tumor immune responses.

Interestingly, the CTLA-4-mediated FoxO1 regulation
occurred independently of Akt, indicating a central cellular
role of FoxO1 downstream of multiple pathways. In this regard,
FoxO1 has recently been shown to be activated by PD-1 and
to promote CD8* T-cell exhaustion.*” Moreover, increased
PDCD4 mRNA levels have been detected in chronically
activated CD8" T cells.*® Thus, the induction of PDCD4
expression by FoxO1 could be a part of a redundant
mechanism that is addressed by both CTLA-4 and PD-1. In
T-helper cells, PDCD4 has already been confirmed as a target
of PD-1 (ref. 49). As a consequence, PDCD4 could be
upregulated even in CTLs that do not express CTLA-4 at a
given time and the same relation could account for PD-1. This
notion would further support the observed superior anti-tumor
response of PDCD4-deficient CD8" T cells being similar to
synergistic effects of a combinatory CTLA-4 and PD-1
blockade.®°

Taken together, the control of protein biosynthesis through
the induction of the translational inhibitor PDCD4 marks an
important immune-checkpoint in CTL differentiation. Our data
further suggests novel targets on CTLs that evoke posttran-
scriptional strategies for improving anti-tumor immune-check-
point therapy.

Materials and Methods
Mice. OVA-specific TCR mice (OT) both CTLA-4"* and PDCD4"* or
CTLA-4~'~ or PDCD4~/~, as well as Ly5.1, C57BL/6 and PDCD4~'~ mice were
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bred under specific pathogen-free conditions in the central animal facility of the
University of Magdeburg Medical School (Germany). OT-| TCR was controlled by
flow cytometry and both CTLA-4~/~ and PDCD4~/~ mice were genotyped as
described elsewhere.™®2® All animal experiments were performed in accordance
with institutional, state and federal guidelines.

Antibodies. The following antibodies against murine antigens were used: «
CD152 (UC10-4F10), isotype control antibody (A19-3), a Va2-TCR (B20.1), a T-bet
(04-46), a CD44 (IM7), o CD45.2 (104) (BD Biosciences, Franklin Lakes, NJ,
USA); a CD3 (145-2C11), « CD28 (37.51), « CD8a (53-6.7), « CD62L (MEL-14),
IFN-y (XMG1.2) (BioLegend, Koblenz, Germany); a Fra-2 (Q20), « GAPDH (A3),
a elF4A (yN-20) (Santa Cruz Biotechnology, Dallas, TX, USA); @ PDCD4 (D29C6),
a elF4G (C45A4), a elF4A (C32B4), a FoxO1 (C29H4), a phospho-Fox015%% o
phospho-AKTS*® & phospho-AKT™%, & Akt (pan) (C67E7), @ SENP3 (D20A10),
a Aldolase A (D73H4), a Lamin B1, a Ubiquitin (P4D1) (Cell Signaling Technology,
Danvers, MA, USA); a phospho-PDCD4%%” (9G6) (Rockland Immunochemicals,
Limerick, PA, USA); a Glutaminase (EP7212) (Abcam, Cambridge, UK). For in vivo
antibody treatment of mice a CTLA-4 (UC10-4F10) were purified from hybridoma
supernatants and controlled by flow cytometry. « DEC-OVA conjugates were
produced as previously described.’

Cell isolation and stimulation. Isolation of APCs or naive CD8* CD44"*"
CDB2LM" T cells from spleens, inguinal- and axillary-lymph nodes was performed
with « CD90 microbeads or o CD8a-FITC and « FITC microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany) according to the manufacturer’s instructions. Isolated
CD8" T cells from C57BL/6 mice were stimulated with antibodies immobilized on
microspheres (Thermo Fisher Scientific, Waltham, MA, USA). Microspheres were
coated as described elsewhere.” The following concentrations were used: 0.75 pg/
ml a CD3, 2 pg/ml « CD28 and 7 pg/ml a CTLA-4 or isotype control antibody. Cells
were cultured with complete medium (RPMI, with 100 U/ml Penicillin, 100 pg/ml
Streptomycin (Thermo Fisher Scientific), and 10% FCS (Biochrom, Berlin,
Germany)) supplemented with 10 ng/ml of recombinant IL-2 (Miltenyi Biotec) and
10 ng/ml of recombinant IL-12 (BioLegend). CD8" T cells from TCR-transgenic
OT| mice were stimulated with 100 pg/ml OVA and 0.2 ug/ml a DEC-OVA in
complete medium supplemented with 1 ng/ml IL-2 and 1 ng/ml IL-12 and CD90
depleted splenocytes from congenic C57BL/6 mice or with OVAgs7.064 peptide-
pulsed microspheres loaded with 1 pg/ml DimerX | fusion protein (BD Biosciences),
5 pg/ml B7.1-Fc (BioLegend) and 8 pg/ml o CTLA-4. In some experiments, CD8*
T cells were treated with 4 mM L-glutamic acid (Sigma-Aldrich, Munich, Germany)
for 60 h prior analysis.

TAT-Cre transduction. Foxo1" cells and TAT-Cre recombinase were kindly
provided by K. Rajewsky (Max Delbriick Center for Molecular Medicine, Berlin,
Germany). Purified Foxo1™ CD8* T cells were washed in serum-free medium
(HyClone Laboratories, Logan, UT, USA), prewarmed and transduced with sterile-
filtrated TAT-Cre dilution®" at a density of 5x 10° cells/ml for 45 min at 37 °C. Cells
were then washed in complete medium and differentiated with 0.75 pg/ml a CD3,
2 pg/ml a CD28 and 7 pg/ml o CTLA-4 antibodies attached to microspheres in
complete medium supplemented with 10 ng/ml of recombinant IL-2 and 10 ng/ml of
recombinant IL-12. Mock-transduced CD8" T cells were identically treated except of
omitted recombinase.

Flow cytometry. For intracellular IFN-y staining « CD3/a CD28/a CTLA-4 or
APC-activated cells were treated with 5 pg/ml Brefeldin A for 3 h, DimerX 1/B7.1-Fc/
a CTLA-4 activated or ex vivo analyzed cells with 10 pg/ml PMA, 1 pg/ml lonomycin
and 5 pg/ml Brefeldin A for 4 h, fixed and permeabilized with 0.5% saponin (Sigma-
Aldrich). In some experiments, cells were loaded with CFSE (Thermo Fisher
Scientific) prior activation. Intracellular T-bet staining was performed using a FoxP3
buffer set (Thermo Fisher Scientific). Cytometric measurements were performed on
a FACS-Canto Il (BD Biosciences) and analyzed with FlowJo (Tree Star, Ashland,
OR, USA) software.

iTRAQ mass spectrometric analysis of phosphorylated proteins.
Isolated phosphorylated proteins of CD8* T cells from day 2 after differentiation with
or without additional CTLA-4 engagement were comparatively analyzed by iTRAQ
mass spectrometry. Fifteen minutes before analysis, cells were thoroughly
re-suspended, shortly centrifuged and incubated at 37 °C to ensure active contacts.
Detailed proteomic methods and phospho-peptide sequencing are described in
Supplementary Materials and Methods.
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Immunoprecipitation and immunoblotting. Immunoprecipitation was
performed with Protein G Microbeads (Miltenyi Biotec) according to the
manufacturer’s instructions. In brief, CD8* T cells were lysed and incubated in
NP-40 lysis buffer with  elF4A (yN-20) and 10 mM NaCl or « PDCD4 or a
Aldolase A antibodies with 100 mM NaCl and Protein G microbeads, and
subsequently purified by positive selection. Immunoprecipitation of PDCD4 or
Aldolase A was conducted with extracts of CD8" T cells on day 2 after differentiation
with @ CD3, « CD28 and additional CTLA-4 engagement. APC-activated CD8*
T cells were isolated with « CD8a-FITC and « FITC microbeads before protein
extraction. Cellular extracts or immunoprecipitates were separated on 10%
SDS-PAGE gels and transferred onto nitrocellulose membranes. Blots were probed
with antibodies, visualized and quantified using the Odyssey scanner and software
(LI-COR, Lincoln, NE, USA). In some experiments the CD8" T cells were treated
with 100 pg/ml Cycloheximide (AppliChem, Darmstadt, Germany) or 40 pM
Forskolin (Sigma-Aldrich) or 10 pM 14-22 amid for 60 min or 5 uM MG132 for
2h or 0.5 uM AS1842856 (Merck Millipore, Darmstadt, Germany) for 24 h before
protein extraction.

Next-generation sequencing and qPCR measurement of mRNA
or microRNA. Small and large RNAs from CD8" T cells or immunoprecipitates
were extracted by using NucleoSpin miRNA Kit and RNA Kit (Macherey-Nagel,
Diren, Germany), respectively. Detailed methods for preparation of cDNA libraries,
as well as sequencing and detection of RNA levels see Supplementary Materials
and Methods.

Animal procedures. Ly5.1 recipient mice were s.c. inoculated with 2x 10°
B16-OVA cells. B16-OVA cells were kindly provided by J. Huehn (Helmholtz Centre
for Infection Research, Braunschweig, Germany).*> Congenic naive CD8* OT-|
T cells (3.3x10% both CTLA-4*"* and PDCD4** or CTLA-4~'~ or PDCD4~/~
were i.v. injected 5 days later. Tumor size was monitored by measurement in three
dimensions with a caliper and calculated as hemi-elliptical volume. Blood samples
were taken on day 6 after CD8" T-cell transfer. In the tumor model with prostate
cancer cells,® 2x10° Luciferase-expressing TRAMP-C1 cells (Applied Biological
Materials, Richmond, BC, Canada) were s.c. inoculated into PDCD4 WT or deficient
mice. Part of the WT mice additionally received 100 pg i.p. injections of « CTLA-4
antibody on day 6, 10 and 13. Complete eradication of TRAMP-C1 Luc tumors was
controlled by in vivo luminescence imaging. In brief, luciferin (150 mg/kg) was
injected i.v. and mice were anesthetized with isoflurane and measured by IVIS 200
in vivo imaging system (PerkinElmer, Waltham, MA, USA).

Statistical analysis. P-values<0.05 were considered statistical significant
and calculated with a two-sided Mann-Whitney rank sum test for the comparison of
two groups; for more than two groups a Kruskal-Wallis test with Dunn’s correction
was used. All determined significances remained by using an equivalent parametric
test. The percentage of tumor-bearing mice was calculated with a Log rank (Mantel-
Cox) test. The determination of significantly different phosphopeptides was
performed by the discrimination of regulated from randomly fluctuating values in
a large number of small samples.®® Statistical significance is indicated as followed:
ns, not significant, *P<0.05 and ***P<0.001.
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